The presence of naphthenic acids in oil sand products and process streams is the cause of toxicity to aquatic life and corrosion. The removal of organic acids from tailings pond water reduces the negative impact on ma...The presence of naphthenic acids in oil sand products and process streams is the cause of toxicity to aquatic life and corrosion. The removal of organic acids from tailings pond water reduces the negative impact on marine life. The ultra-violet (UV) photocatalytic reduction of commercial naphthenic acid in water using TiO2-zeolitecomposites showed a significant decrease in the concentration of naphthenic acid, accompanied by an increase in carbon dioxide formation;the presence of carbon dioxide signifies degradation of the naphthenic acids. Mixtures of the acid and photocatalyst kept in the dark did not show any concentration changes. The extent of naphthenic acid reduction by UV light was verified by the reduction in total acidity. The total acidity values of mixtures of the acid and TiO2-zeoliteexposed to UV decreased by 31% compared to mixtures kept in the dark. A reduction in total acidity may lead to a decrease in the toxicity of naphthenic acid contaminated water.展开更多
文摘The presence of naphthenic acids in oil sand products and process streams is the cause of toxicity to aquatic life and corrosion. The removal of organic acids from tailings pond water reduces the negative impact on marine life. The ultra-violet (UV) photocatalytic reduction of commercial naphthenic acid in water using TiO2-zeolitecomposites showed a significant decrease in the concentration of naphthenic acid, accompanied by an increase in carbon dioxide formation;the presence of carbon dioxide signifies degradation of the naphthenic acids. Mixtures of the acid and photocatalyst kept in the dark did not show any concentration changes. The extent of naphthenic acid reduction by UV light was verified by the reduction in total acidity. The total acidity values of mixtures of the acid and TiO2-zeoliteexposed to UV decreased by 31% compared to mixtures kept in the dark. A reduction in total acidity may lead to a decrease in the toxicity of naphthenic acid contaminated water.