We report the epitaxial growth of YBCO (YBa2Cu3O7) films on YSZ (Yttria-stabilized Zirconia) (100) substrates by chemical solution deposition. The precursor solution was prepared by dissolving stoichiometric amo...We report the epitaxial growth of YBCO (YBa2Cu3O7) films on YSZ (Yttria-stabilized Zirconia) (100) substrates by chemical solution deposition. The precursor solution was prepared by dissolving stoichiometric amounts of acetates of Y(OOCCH3)3·4H2O, Ba(OOCCH3)2 and Cu(OOCCH3)·2H2O in an aqueous solution of oxalic acid (H2C2O4) and following the sol-gel route. This solution was directly dripped onto YSZ (100) substrates with the help of a Fisher pipette. To form the YBCO film, the sample was crystallized by annealing at 860 ℃ for 12 h in an oxidizing atmosphere. The characterization was performed by XRD (X-ray diffraction) analysis which revealed high intensity (001) reflections and denoted that most of the grains were c-axis oriented. Randomly oriented grains and other phases such as Y2BaCuO5 and CuO were also detected. The superconducting YBCO phase is demonstrated from the susceptibility versus temperature measurements which indicate a superconducting critical temperature ≈ 90 K. In addition, a surface morphology analysis was performed by optical microscopy and atomic force microscopy which revealed an average roughness of 0.2197 μm.展开更多
文摘We report the epitaxial growth of YBCO (YBa2Cu3O7) films on YSZ (Yttria-stabilized Zirconia) (100) substrates by chemical solution deposition. The precursor solution was prepared by dissolving stoichiometric amounts of acetates of Y(OOCCH3)3·4H2O, Ba(OOCCH3)2 and Cu(OOCCH3)·2H2O in an aqueous solution of oxalic acid (H2C2O4) and following the sol-gel route. This solution was directly dripped onto YSZ (100) substrates with the help of a Fisher pipette. To form the YBCO film, the sample was crystallized by annealing at 860 ℃ for 12 h in an oxidizing atmosphere. The characterization was performed by XRD (X-ray diffraction) analysis which revealed high intensity (001) reflections and denoted that most of the grains were c-axis oriented. Randomly oriented grains and other phases such as Y2BaCuO5 and CuO were also detected. The superconducting YBCO phase is demonstrated from the susceptibility versus temperature measurements which indicate a superconducting critical temperature ≈ 90 K. In addition, a surface morphology analysis was performed by optical microscopy and atomic force microscopy which revealed an average roughness of 0.2197 μm.