Sugarcane leaves-derived polyphenols(SLP)have been demonstrated to have diverse health-promoting benefits,but the mechanism of action has not been fully elucidated.This study aimed to investigate the anti-metabolic di...Sugarcane leaves-derived polyphenols(SLP)have been demonstrated to have diverse health-promoting benefits,but the mechanism of action has not been fully elucidated.This study aimed to investigate the anti-metabolic disease effects of SLP and the underlying mechanisms in mice.In the current study,we prepared the SLP mainly consisting of three flavonoid glycosides,three phenol derivatives,and two lignans including one new compound,and further demonstrated that SLP reduced body weight gain and fat accumulation,improved glucose and lipid metabolism disorders,ameliorated hepatic steatosis,and regulated short-chain fatty acids(SCFAs)production and secondary bile acids metabolism in ob/ob mice.Notably,SLP largely altered the gut microbiota composition,especially enriching the commensal bacteria Akkermansia muciniphila and Bacteroides acidifaciens.Oral gavage with the above two strains ameliorated metabolic syndrome(MetS),regulated secondary bile acid metabolism,and increased the production of SCFAs in high-fat diet(HFD)-induced obese mice.These results demonstrated that SLP could be used as a prebiotic to attenuate MetS via regulating gut microbiota composition and further activating the secondary bile acids-mediated gut-adipose axis.展开更多
Esophageal cancer(ESC)is a malignant tumor that originates from the mucosal epithelium of the esophagus and is part of the digestive tract.Although the exact pathogenesis of ESC has not been fully elucidated,excessive...Esophageal cancer(ESC)is a malignant tumor that originates from the mucosal epithelium of the esophagus and is part of the digestive tract.Although the exact pathogenesis of ESC has not been fully elucidated,excessive oxidative stress is an important characteristic that leads to the development of many cancers.Abnormal expression of several proteins and transcription factors contributes to oxidative stress in ESCs,which alters the growth and proliferation of ESCs and promotes their metastasis.Natural compounds,including alkaloids,terpenes,polyphenols,and xanthine compounds,can inhibit reactive oxygen species production in ESCs.These compounds reduce oxidative stress levels and subsequently inhibit the oc-currence and progression of ESC through the regulation of targets and pathways such as the cytokine interleukins 6 and 10,superoxide dismutase,the NF-+ACY-kappa+ADs-B/MAPK pathway,and the mammalian Nrf2/ARE target pathway.Thus,targeting tumor oxidative stress has become a key focus in anti-ESC therapy.This review discusses the potential of Natural products(NPs)for treating ESCs and summarizes the application prospects of oxidative stress as a new target for ESC treatment.The findings of this review provide a reference for drug development targeting ESCs.Nonetheless,further high-quality studies will be necessary to determine the clinical efficacy of these various NPs.展开更多
Mushroom-derived cyathane-type diterpenes possess unusual chemical skeleton and diverse bioactivities.To efficiently supply bioactive cyathanes for deep studies and explore their structural diversity,de novo synthesis...Mushroom-derived cyathane-type diterpenes possess unusual chemical skeleton and diverse bioactivities.To efficiently supply bioactive cyathanes for deep studies and explore their structural diversity,de novo synthesis of cyathane diterpenes in a geranylgeranyl pyrophosphate engineered Saccharomyces cerevisiae is investigated.Aided by homologous analyses,one new unclustered FAD-dependent oxidase EriM accounting for the formation of allyl aldehyde and three new NADP(H)-dependent reductases in the biosynthesis of cyathanes are identified and elucidated.By combinatorial biosynthetic strategy,S.cerevisiae strains generating twenty-two cyathane-type diterpenes,including seven"unnatural"cyathane xylosides(12,13,14a,14b,19,20,and 22)are established.Compounds 12-14,19,and 20 show significant neurotrophic effects on PC 12 cells in the dose of 6.3-25.0μmol/L.These studies provide new insights into the divergent biosynthesis of mushroom-originated cyathanes and a straightforward approach to produce bioactive cyathane-type diterpenes.展开更多
In order to avoid leakage problem caused by liquid electrolyte, a new ionogel electrolyte was developed by in situ immobilizing organosilicon-functionalized ionic liquid within a nanoporous silica matrix. The ionic li...In order to avoid leakage problem caused by liquid electrolyte, a new ionogel electrolyte was developed by in situ immobilizing organosilicon-functionalized ionic liquid within a nanoporous silica matrix. The ionic liquid evenly coats on the surface of porous silica and fills in the silica framework pores with no strong chemical interaction. The ionogel electrolyte has the dual advantages of a silica solid support and a wide electrochemical stability window of ionic liquid (4.87 V vs. Li^+/Li). The half-cells assembled with this electrolyte and LiFePO4 electrode have excellent performance at room temperature and 60 ℃. The Li/SiO2-IGE/LiFePO4 cell displays a discharge capacity of 129.1 mAh·g^-1 after 200 charge/discharge cycles at room temperature.展开更多
Accurate estimates of bacterial carbon metabolic rates are indispensable for understanding the regulation of carbon fluxes in aquatic environments.Here,changes in bacterial growth,production,and cell volume in both pr...Accurate estimates of bacterial carbon metabolic rates are indispensable for understanding the regulation of carbon fluxes in aquatic environments.Here,changes in bacterial growth,production,and cell volume in both pre-filtered and unfiltered seawater during 24 h incubation were monitored.The methodological artifacts during Winkler bacterial respiration(BR)measurements in subtropical Hong Kong coastal waters were assessed.Bacterial abundance increased by 3-and 1.8-fold in the pre-filtered and unfiltered seawater after incubation,respectively.Bacterial production(BP)and cell volume also showed significant enhancement.Compared with the BR measurements obtained by the Winkler method,the instantaneous free-living BR measurements,after correction,decreased by~70%.The time-integrated free-living BR and BP during 24 h incubation in the pre-filtered sample provided an improved estimate of bacterial growth efficiency,which increased by~52%compared to the common estimations using the noncomparable measurements of integrated free-living BR and instantaneous total BP.The overestimation of BR also exaggerated the contribution of bacteria to community respiration,affecting the understanding on the metabolic state of the marine ecosystems.Furthermore,the BR estimates by the Winkler method may be more biased in environments with a higher bacterial growth rate and tightly coupled grazing mortality,as well as in those with higher nutrient concentrations.These results reveal obvious problems associated with the BR methodology and raise a warning for caution when comparing BP and BR,as well as when making estimations of carbon flow through the complex microbial networks in aquatic ecosystems.展开更多
基金supported by the National key research and development program of China(2019YFA0905600)the Science and Technology Service Network Program of the Chinese Academy of Sciences(KFJ-STS-QYZD-201-5-3)the Strategic Priority Research Program(Class B)of Chinese Academy of Sciences(XDB 38020300)。
文摘Sugarcane leaves-derived polyphenols(SLP)have been demonstrated to have diverse health-promoting benefits,but the mechanism of action has not been fully elucidated.This study aimed to investigate the anti-metabolic disease effects of SLP and the underlying mechanisms in mice.In the current study,we prepared the SLP mainly consisting of three flavonoid glycosides,three phenol derivatives,and two lignans including one new compound,and further demonstrated that SLP reduced body weight gain and fat accumulation,improved glucose and lipid metabolism disorders,ameliorated hepatic steatosis,and regulated short-chain fatty acids(SCFAs)production and secondary bile acids metabolism in ob/ob mice.Notably,SLP largely altered the gut microbiota composition,especially enriching the commensal bacteria Akkermansia muciniphila and Bacteroides acidifaciens.Oral gavage with the above two strains ameliorated metabolic syndrome(MetS),regulated secondary bile acid metabolism,and increased the production of SCFAs in high-fat diet(HFD)-induced obese mice.These results demonstrated that SLP could be used as a prebiotic to attenuate MetS via regulating gut microbiota composition and further activating the secondary bile acids-mediated gut-adipose axis.
文摘Esophageal cancer(ESC)is a malignant tumor that originates from the mucosal epithelium of the esophagus and is part of the digestive tract.Although the exact pathogenesis of ESC has not been fully elucidated,excessive oxidative stress is an important characteristic that leads to the development of many cancers.Abnormal expression of several proteins and transcription factors contributes to oxidative stress in ESCs,which alters the growth and proliferation of ESCs and promotes their metastasis.Natural compounds,including alkaloids,terpenes,polyphenols,and xanthine compounds,can inhibit reactive oxygen species production in ESCs.These compounds reduce oxidative stress levels and subsequently inhibit the oc-currence and progression of ESC through the regulation of targets and pathways such as the cytokine interleukins 6 and 10,superoxide dismutase,the NF-+ACY-kappa+ADs-B/MAPK pathway,and the mammalian Nrf2/ARE target pathway.Thus,targeting tumor oxidative stress has become a key focus in anti-ESC therapy.This review discusses the potential of Natural products(NPs)for treating ESCs and summarizes the application prospects of oxidative stress as a new target for ESC treatment.The findings of this review provide a reference for drug development targeting ESCs.Nonetheless,further high-quality studies will be necessary to determine the clinical efficacy of these various NPs.
基金supported by the grants from the National Key R&D program of China(Grant 2018YFD0400203 and 2017YEE0108200)the National Natural Science Foundation of China(Grant 21472233)the“Innovative Cross Team”project,CAS(Grant E0222L01R1,China)
文摘Mushroom-derived cyathane-type diterpenes possess unusual chemical skeleton and diverse bioactivities.To efficiently supply bioactive cyathanes for deep studies and explore their structural diversity,de novo synthesis of cyathane diterpenes in a geranylgeranyl pyrophosphate engineered Saccharomyces cerevisiae is investigated.Aided by homologous analyses,one new unclustered FAD-dependent oxidase EriM accounting for the formation of allyl aldehyde and three new NADP(H)-dependent reductases in the biosynthesis of cyathanes are identified and elucidated.By combinatorial biosynthetic strategy,S.cerevisiae strains generating twenty-two cyathane-type diterpenes,including seven"unnatural"cyathane xylosides(12,13,14a,14b,19,20,and 22)are established.Compounds 12-14,19,and 20 show significant neurotrophic effects on PC 12 cells in the dose of 6.3-25.0μmol/L.These studies provide new insights into the divergent biosynthesis of mushroom-originated cyathanes and a straightforward approach to produce bioactive cyathane-type diterpenes.
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0100204)the National Natural Science Foundation of China(No.51772030)+2 种基金the Joint Funds of the National Natural Science Foundation of China(No.U1564206)the Major Achievements Transformation Project for Central University in Beijingthe Science and Technology Project of State Grid Corporation of China(No.15-JS-191)
文摘In order to avoid leakage problem caused by liquid electrolyte, a new ionogel electrolyte was developed by in situ immobilizing organosilicon-functionalized ionic liquid within a nanoporous silica matrix. The ionic liquid evenly coats on the surface of porous silica and fills in the silica framework pores with no strong chemical interaction. The ionogel electrolyte has the dual advantages of a silica solid support and a wide electrochemical stability window of ionic liquid (4.87 V vs. Li^+/Li). The half-cells assembled with this electrolyte and LiFePO4 electrode have excellent performance at room temperature and 60 ℃. The Li/SiO2-IGE/LiFePO4 cell displays a discharge capacity of 129.1 mAh·g^-1 after 200 charge/discharge cycles at room temperature.
基金supported by the Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory(Guang-zhou)(SMSEGL20SC02)the Hong Kong Research Grants Council(T21/602/16,16128416,N_HKUST609/15)+1 种基金the National Natural Science Foundation of China(41906126,42176149)Fundamental Research Funds for the Central Universities(201912003).
文摘Accurate estimates of bacterial carbon metabolic rates are indispensable for understanding the regulation of carbon fluxes in aquatic environments.Here,changes in bacterial growth,production,and cell volume in both pre-filtered and unfiltered seawater during 24 h incubation were monitored.The methodological artifacts during Winkler bacterial respiration(BR)measurements in subtropical Hong Kong coastal waters were assessed.Bacterial abundance increased by 3-and 1.8-fold in the pre-filtered and unfiltered seawater after incubation,respectively.Bacterial production(BP)and cell volume also showed significant enhancement.Compared with the BR measurements obtained by the Winkler method,the instantaneous free-living BR measurements,after correction,decreased by~70%.The time-integrated free-living BR and BP during 24 h incubation in the pre-filtered sample provided an improved estimate of bacterial growth efficiency,which increased by~52%compared to the common estimations using the noncomparable measurements of integrated free-living BR and instantaneous total BP.The overestimation of BR also exaggerated the contribution of bacteria to community respiration,affecting the understanding on the metabolic state of the marine ecosystems.Furthermore,the BR estimates by the Winkler method may be more biased in environments with a higher bacterial growth rate and tightly coupled grazing mortality,as well as in those with higher nutrient concentrations.These results reveal obvious problems associated with the BR methodology and raise a warning for caution when comparing BP and BR,as well as when making estimations of carbon flow through the complex microbial networks in aquatic ecosystems.