农田尺度下作物叶面积指数(Leaf area index,LAI)的精准监测,对于研究群体结构对产量和管理措施的响应具有重要意义。目前普遍采用无人机光谱特征反演作物的LAI指数,作为长势和冠层结构诊断的重要依据,其估测精度的准确性是否可以提高...农田尺度下作物叶面积指数(Leaf area index,LAI)的精准监测,对于研究群体结构对产量和管理措施的响应具有重要意义。目前普遍采用无人机光谱特征反演作物的LAI指数,作为长势和冠层结构诊断的重要依据,其估测精度的准确性是否可以提高仍有待研究。作物表面特征,如灰度和颜色,在不同生育阶段会发生变化。为此,本研究考虑到LAI的影响因素,设置不同的种植密度和氮素水平营造差异化的冠层结构,利用搭载多光谱传感器的无人机获取主要生育时期棉花的冠层图像得到植被指数(Vegetation indexs,VIs),基于二阶概率统计滤波(Co-occurrence measures)方法获取均值(MEA)、方差(VAR)、协同性(HOM)、对比度(CON)、相异性(DIS)、信息熵(ENT)、二阶矩(SEM)和相关性(COR)等8个纹理特征值(Texture features,TFs)。最后,采用支持向量机回归(SVR)、偏最小二乘法(PLSR)、深度神经网络(DNN)分别建立基于光谱特征、纹理特征以及二者结合的棉花LAI的估算模型,并比较差异。试验结果表明:VI((nir/green))、VI((nir/red))、GNDVI、OSAVI和均值与LAI具有较高的相关性;采用SVR建立的LAI估测精度最高(R2=0.78,RMSE为0.22,RRMSE为0.10);在3种估算模型中,植被指数与纹理特征相结合的SVR模型,较VIs、TFs模型精度分别提高7.89%和32.26%。因此,融合无人机光谱信息和图像纹理的LAI估算模型为密植作物棉花冠层结构的诊断提供了一种可行、准确的方法。展开更多