Abstract: Thermochronological dating was used to study the thermal evolution of the Mesozoic plutons and uplift history of the Yanshan orogenic belt. The results show that the cooling history of the plutons is complic...Abstract: Thermochronological dating was used to study the thermal evolution of the Mesozoic plutons and uplift history of the Yanshan orogenic belt. The results show that the cooling history of the plutons is complicated, corresponding to the inhomogeneous uplift process of the Yanshan orogenic belt. The Panshan granite cooled fast during 226.48–204.95 Ma at a rate of 10.22°C/Ma after its emplacement at a depth of about 10 km, and its fast uplift occurred in about 96–35 Ma at an average rate of 0.115 mm/a. The Wulingshan pluton cooled fast during 132–127.23 Ma at a rate of 94.34°C/Ma, and its rapid uplift occurred in 86–45 Ma at an average rate of 0.186 mm/a. The Yunmengshan granite cooled fast during 143–120.99 Ma at a rate of 19.51°C/Ma, and its rapid uplift occurred in 106–103.95 Ma and 20–0.0 Ma at a rate of 1.06 mm/a and 0.15 mm/a respectively. The Sihetang granite-gneiss uplifted rapidly since 13 Ma at an average rate of 0.256 mm/a. The Badaling granite uplifted rapidly since 6 Ma at an average rate of 0.556 mm/a. The Cenozoic uplift of the Yanshan Mountains can be well correlated to the rifting process of the surrounding basins.展开更多
This paper summarizes the Late Palaeozoic. Indosinian and Yanshanian palaeotectonic settings in theperi-Pacific region of East Asia. On that basis, the Himalayan crustal movement in the region is divided intothe early...This paper summarizes the Late Palaeozoic. Indosinian and Yanshanian palaeotectonic settings in theperi-Pacific region of East Asia. On that basis, the Himalayan crustal movement in the region is divided intothe early and late tectonic stages and two principal tectonic phases. From the ocean to the continent, 5 giganticHimalayan formation-deformation belts are distinguished; they are the Northwest Pacific trench-island arcbelt. the Northwest Pacific marginal sea basin bell. the East China Sea-northern South China Seacontinental-shelf down-faulted belt. the East Asian epicontinental rift belt. and the East Asian intracontinentalrift belt. The Early and Late Himalayan tectonic evolution is dealt with. Finally the state of the Himalayan re-gional stress field and its evoution in the region are discussed. It is considered that the mechanism of their for-mation is closely related to the continent-ocean and surface-deep earth interaction.展开更多
文摘Abstract: Thermochronological dating was used to study the thermal evolution of the Mesozoic plutons and uplift history of the Yanshan orogenic belt. The results show that the cooling history of the plutons is complicated, corresponding to the inhomogeneous uplift process of the Yanshan orogenic belt. The Panshan granite cooled fast during 226.48–204.95 Ma at a rate of 10.22°C/Ma after its emplacement at a depth of about 10 km, and its fast uplift occurred in about 96–35 Ma at an average rate of 0.115 mm/a. The Wulingshan pluton cooled fast during 132–127.23 Ma at a rate of 94.34°C/Ma, and its rapid uplift occurred in 86–45 Ma at an average rate of 0.186 mm/a. The Yunmengshan granite cooled fast during 143–120.99 Ma at a rate of 19.51°C/Ma, and its rapid uplift occurred in 106–103.95 Ma and 20–0.0 Ma at a rate of 1.06 mm/a and 0.15 mm/a respectively. The Sihetang granite-gneiss uplifted rapidly since 13 Ma at an average rate of 0.256 mm/a. The Badaling granite uplifted rapidly since 6 Ma at an average rate of 0.556 mm/a. The Cenozoic uplift of the Yanshan Mountains can be well correlated to the rifting process of the surrounding basins.
文摘This paper summarizes the Late Palaeozoic. Indosinian and Yanshanian palaeotectonic settings in theperi-Pacific region of East Asia. On that basis, the Himalayan crustal movement in the region is divided intothe early and late tectonic stages and two principal tectonic phases. From the ocean to the continent, 5 giganticHimalayan formation-deformation belts are distinguished; they are the Northwest Pacific trench-island arcbelt. the Northwest Pacific marginal sea basin bell. the East China Sea-northern South China Seacontinental-shelf down-faulted belt. the East Asian epicontinental rift belt. and the East Asian intracontinentalrift belt. The Early and Late Himalayan tectonic evolution is dealt with. Finally the state of the Himalayan re-gional stress field and its evoution in the region are discussed. It is considered that the mechanism of their for-mation is closely related to the continent-ocean and surface-deep earth interaction.