The chemokine system consists of four different subclasses with over 50 chemokines and 19 receptors. Their functions in the immune system have been well elucidated and research during the last decades unveils their ne...The chemokine system consists of four different subclasses with over 50 chemokines and 19 receptors. Their functions in the immune system have been well elucidated and research during the last decades unveils their new roles in hepatocellular carcinoma(HCC). The chemokines and their receptors in the microenvironment influence the development of HCCby several aspects including:inflammation,effects on immune cells,angiogenesis,and direct effects on HCC cells. Regarding these aspects,pre-clinical research by targeting the chemokine system has yielded promising data,and these findings bring us new clues in the chemokine-based therapies for HCC.展开更多
Aim: To investigate the antitumor immunity by a dendritic cell (DC) vaccine encoding secondary lymphoid chemokine gene and tumor lysate on murine prostate cancer. Methods: DC from bone marrow of C57BL/6 were trans...Aim: To investigate the antitumor immunity by a dendritic cell (DC) vaccine encoding secondary lymphoid chemokine gene and tumor lysate on murine prostate cancer. Methods: DC from bone marrow of C57BL/6 were transfected with a plasmid vector expressing secondary lymphoid chemokine (SLC) cDNA by Lipofectamine2000 liposome and tumor lysate. Total RNA extracted from SLC+lysate-DC was used to verify the expression of SLC by reverse transcriptase-polymerase chain reaction (RT-PCR). The immunotherapeutic effect of DC vaccine on murine prostate cancer was assessed. Results: We found that in the prostate tumor model of C57BL/6 mice, the adminstration of SLC+lysate-DC inhibited tumor growth most significantly when compared with SLC-DC, lysate-DC, DC or phos- phate buffer solution (PBS) counterparts (P 〈 0.01). Immunohistochemical fluorescent staining analysis showed the infiltration of more CD4+, CD8+ T cell and CD11c+ DC within established tumor treated by SLC+lysate-DC vaccine than other DC vaccines (P 〈 0.01). Conclusion: DC vaccine encoding secondary lymphoid chemokine and tumor lysate can elicit significant antitumor immunity by infiltration of CD4+, CD8+ T cell and DC, which might provide a potential immunotherapy method for prostate cancer.展开更多
基金Supported by National Science Foundation of China,No.31471147
文摘The chemokine system consists of four different subclasses with over 50 chemokines and 19 receptors. Their functions in the immune system have been well elucidated and research during the last decades unveils their new roles in hepatocellular carcinoma(HCC). The chemokines and their receptors in the microenvironment influence the development of HCCby several aspects including:inflammation,effects on immune cells,angiogenesis,and direct effects on HCC cells. Regarding these aspects,pre-clinical research by targeting the chemokine system has yielded promising data,and these findings bring us new clues in the chemokine-based therapies for HCC.
文摘Aim: To investigate the antitumor immunity by a dendritic cell (DC) vaccine encoding secondary lymphoid chemokine gene and tumor lysate on murine prostate cancer. Methods: DC from bone marrow of C57BL/6 were transfected with a plasmid vector expressing secondary lymphoid chemokine (SLC) cDNA by Lipofectamine2000 liposome and tumor lysate. Total RNA extracted from SLC+lysate-DC was used to verify the expression of SLC by reverse transcriptase-polymerase chain reaction (RT-PCR). The immunotherapeutic effect of DC vaccine on murine prostate cancer was assessed. Results: We found that in the prostate tumor model of C57BL/6 mice, the adminstration of SLC+lysate-DC inhibited tumor growth most significantly when compared with SLC-DC, lysate-DC, DC or phos- phate buffer solution (PBS) counterparts (P 〈 0.01). Immunohistochemical fluorescent staining analysis showed the infiltration of more CD4+, CD8+ T cell and CD11c+ DC within established tumor treated by SLC+lysate-DC vaccine than other DC vaccines (P 〈 0.01). Conclusion: DC vaccine encoding secondary lymphoid chemokine and tumor lysate can elicit significant antitumor immunity by infiltration of CD4+, CD8+ T cell and DC, which might provide a potential immunotherapy method for prostate cancer.