期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Microstructure and Mechanical Properties of Intercritical Heat-affected Zone of X80 Pipeline Steel in Simulated In-Service Welding 被引量:4
1
作者 Xin-Jie Di Lin Cai +2 位作者 Xi-Xue Xing cui-xin chen Zhen-Kui Xue 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第7期883-891,共9页
The intercritical heat-affected zone(ICHAZ) of X80 pipeline steel was simulated by using the Gleeble-3500thermal/mechanical simulator according to the thermal cycle of in-service welding.The microstructures of ICHAZ... The intercritical heat-affected zone(ICHAZ) of X80 pipeline steel was simulated by using the Gleeble-3500thermal/mechanical simulator according to the thermal cycle of in-service welding.The microstructures of ICHAZ with different cooling rates were examined,and the hardness,the toughness and corresponding fractography were investigated.Results show that untransformed bainite and ferrite as well as retransformed fine bainite and martensite–austenite(M–A)constituents constitute the microstructure of ICHAZ.The two different morphologies of M–A constituents are stringer and block.Second phase particles which mainly composed of Ti,Nb,C,Fe and Cu coarsened in ICHAZ.Compared with normal welding condition,the toughness of ICHAZ is poor when the cooling time is short under in-service welding condition because of the large area fraction and size of M–A constituents that connect into chains and distribute at the grain boundaries.The Vickers hardness of ICHAZ that decreases with the increase in the cooling time is independent with the area fraction of M–A constituents. 展开更多
关键词 X80 pipeline steel In-service welding Heat-affected zone MICROSTRUCTURE TOUGHNESS
原文传递
Microstructural Evolution and Softening Behavior of Simulated Heat-Affected Zone in 2219 Aluminum Alloy 被引量:3
2
作者 Xin-Jie Di Hui-Juan Xie +2 位作者 cui-xin chen Cai-Yan Deng Dong-Po Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2017年第12期1177-1184,共8页
The effect of peak temperature (Tp) at 200, 300, 400, 500 and 550 ℃ on the microstructural evolution and softening behavior of the simulated heat-affected zone (HAZ) was studied in the 2219-T87 alloy by electron-... The effect of peak temperature (Tp) at 200, 300, 400, 500 and 550 ℃ on the microstructural evolution and softening behavior of the simulated heat-affected zone (HAZ) was studied in the 2219-T87 alloy by electron-backscatter diffraction, transmission electron microscopy, X-ray diffraction, micro-hardness and micro-tensile tests. The results showed that the grain size in the HAZs at 200-500 ℃ was comparable, but the number density of the strengthening precipitates (GP zones/θ′) decreased with increasing Tp. At a Tp of 550 ℃, the grain size significantly decreased and the distribution of the misorientation angles corresponded to the MacKenzie distribution. The GP zones/θ′ phase coarsened and translated into θ phases at Tp values in the range of 200-400 ℃. Increasing the Tp to 500 ℃ and above, some θ′ phases translated into θ phases and others dissolved into the α-Al matrix which led to an increase in the solid solution strengthening. The reduction of the number density of the GP zones/θ′ was responsible for the softening behavior. 展开更多
关键词 2219 aluminum alloy Peak temperature of thermal cycles Electron-backscatter diffraction(EBSD) Softening behavior PRECIPITATES
原文传递
Microstructure and mechanical properties of weld metal in laser and gas metal arc hybrid welding of 440-MPa-grade high-strength steel 被引量:3
3
作者 Fu-xing Yin Xu-chen Li +3 位作者 cui-xin chen Lin Zhao Yun Peng Zhi-ling Tian 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第7期853-861,共9页
Fiber laser and gas metal arc hybrid welding of 440-MPa-grade high-strength marine steel was carried out at different welding speeds.The influence of welding speed on the micro structure and mechanical properties of w... Fiber laser and gas metal arc hybrid welding of 440-MPa-grade high-strength marine steel was carried out at different welding speeds.The influence of welding speed on the micro structure and mechanical properties of weld metal was investigated.The weld-metal microstructure mainly consisted of pre-eutectoid ferrite,side-plate ferrite,acicular ferrite and lath bainite at a low welding speed.With the increase in welding speed,acicular ferrite and lath bainite were the dominant weld-metal microstructures.All samples failed at the base metal during tensile tests,which indicates that there is no soft zone in the hybrid welds.The welding speed had a significant effect on the impact toughness of the weld metal.The impact absorbed energy of the weld metal increased from 35 to 105 J with the increase in welding speed from 0.8 to 2.0 m/min.Large amounts of acicular ferrite and lath bainite were formed in the weld metal at a high welding speed,which resulted in an excellent impact toughness. 展开更多
关键词 Laser-arc hybrid welding High-strength steel Microstructure Mechanical property
原文传递
Effect of Post-weld Heat Treatment on the Microstructure and Corrosion Resistance of Deposited Metal of a High- Chromium Nickel-Based Alloy 被引量:2
4
作者 Xin-Jie Di Xiao-Qian Liu +2 位作者 cui-xin chen Bao-Sen Wang Xiao-Jiang Guo 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第12期1136-1143,共8页
The evolution of Cr23C6 carbides in the deposited metal (DM) of a high-chromium nickel-based alloy was investigated after the post-weld heat treatment (PWHT) at 650, 750, 850, and 950 ℃, respectively. With the in... The evolution of Cr23C6 carbides in the deposited metal (DM) of a high-chromium nickel-based alloy was investigated after the post-weld heat treatment (PWHT) at 650, 750, 850, and 950 ℃, respectively. With the increase in temperature, the morphology of the Cr23C6 carbides at the grain boundaries was transformed from the continuous lamellar- like to the semi-continuous rod-like and then to the discontinuous granular. Besides, the needle-like Cr23C6 carbides precipitated from 7 matrix after PWHT at 850 ℃. The coarsening kinetics of the needle-like Cr23C6 carbides obeyed the Lifshitz-Slyozov-Wagner law with the growth speed of 4.93 μm3/h in length and 5.56 ×10^-3 μm3/h in width. Moreover, the ratio of the carbide length to width increased rapidly at first and then flattened as the holding time increased to 850 ℃. The results of electrochemical corrosion experiment indicated that the needled-like Cr23C6 carbides impaired the corrosion resistance of DM due to the formation of chromium depletion around the carbides. 展开更多
关键词 Post-weld heat treatment Carbide precipitation Morphology evolution Electrochemical behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部