2024 Aluminum alloy powder( 60wt%) and Fe-based amorphous powder( 40 wt%) were adopted. They were mechanical machined for 48hours after being mixed. Bulk material was gained after Spark Plasma Sintering. The sintering...2024 Aluminum alloy powder( 60wt%) and Fe-based amorphous powder( 40 wt%) were adopted. They were mechanical machined for 48hours after being mixed. Bulk material was gained after Spark Plasma Sintering. The sintering parameters included sintering temperature,heating or cooling rates,pressure and holding time. 300 ℃- 800 ℃ were adopted while the heating or cooling rate was 100 ℃ / min and with the pressure of 50 MPa in the experiments. The holding time was 10 min or 20 min at different temperatures, respectively. Bulk materials after sintering were examined by Scanning Electron Microscopy and X-Ray Diffraction. The micro-hardness and relative density also were tested. The sintering temperature had the most significant influence on the microstructure and property of the bulk material. The influence of holding time came second while the heating or cooling rates and pressure were fixed. The density became larger with the increase of the temperature. The compactness was best at 500℃. The pressure and generation of high-temperature phases were the factors which affected the density and the compactness.展开更多
An innovational method that poly(styrene-co-maleic anhydride)(SMA),a compatibilizer of immiscible nylon6/polystyrene(PA6/PS) blends,was first reacted with carbon black(CB) and then blended with PA6/PS,has been employe...An innovational method that poly(styrene-co-maleic anhydride)(SMA),a compatibilizer of immiscible nylon6/polystyrene(PA6/PS) blends,was first reacted with carbon black(CB) and then blended with PA6/PS,has been employed to prepare the PA6/PS/(SMA-CB) composites of which CB localized at the interface.In PA6/PS/CB blends,CB was found to preferentially localize in the PA6 phase.However,in the PA6/PS/(SMA-CB) blends,it was found that CB particles can be induced by SMA to localize at the interface.The electrical porperties of PA6/PS/(SMA-CB) composites were investigated.The results showed that the composites exhibited distinct triple percolation behavior,i.e.the percolation is governed by the percolation of CB in SMA phase,the continuity of SMA-CB at the interface and the continuity of PA6/PS interface.The percolation threshold of PA6/PS/(SMA-CB) was only 0.15 wt%,which is much lower than that of PA6/PS/CB.Moreover,the PTC(positive temperature coefficient) intensity of PA6/PS/(SMA-CB) composites was stronger than that of PA6/PS/CB and the negative temperature coefficient(NTC) effect was eliminated.The electrical properties of PA6/PS/(SMA-CB) were explained in terms of its special interface morphology:SMA and CB localize at interphase to form the conductive pathways.展开更多
基金Sponsored by the National Basic Research Development Program of China(973 Program)(Grant No.2012CB619503)National High Technology Research and Development Program of China(863 Program)(Grant No.2013AA031001)International S&T Cooperation Program of China(Grant No.2012DFA50630)
文摘2024 Aluminum alloy powder( 60wt%) and Fe-based amorphous powder( 40 wt%) were adopted. They were mechanical machined for 48hours after being mixed. Bulk material was gained after Spark Plasma Sintering. The sintering parameters included sintering temperature,heating or cooling rates,pressure and holding time. 300 ℃- 800 ℃ were adopted while the heating or cooling rate was 100 ℃ / min and with the pressure of 50 MPa in the experiments. The holding time was 10 min or 20 min at different temperatures, respectively. Bulk materials after sintering were examined by Scanning Electron Microscopy and X-Ray Diffraction. The micro-hardness and relative density also were tested. The sintering temperature had the most significant influence on the microstructure and property of the bulk material. The influence of holding time came second while the heating or cooling rates and pressure were fixed. The density became larger with the increase of the temperature. The compactness was best at 500℃. The pressure and generation of high-temperature phases were the factors which affected the density and the compactness.
基金supported by the Natural Science Foundation of Education Department of Henan Province (No.2009A430008)
文摘An innovational method that poly(styrene-co-maleic anhydride)(SMA),a compatibilizer of immiscible nylon6/polystyrene(PA6/PS) blends,was first reacted with carbon black(CB) and then blended with PA6/PS,has been employed to prepare the PA6/PS/(SMA-CB) composites of which CB localized at the interface.In PA6/PS/CB blends,CB was found to preferentially localize in the PA6 phase.However,in the PA6/PS/(SMA-CB) blends,it was found that CB particles can be induced by SMA to localize at the interface.The electrical porperties of PA6/PS/(SMA-CB) composites were investigated.The results showed that the composites exhibited distinct triple percolation behavior,i.e.the percolation is governed by the percolation of CB in SMA phase,the continuity of SMA-CB at the interface and the continuity of PA6/PS interface.The percolation threshold of PA6/PS/(SMA-CB) was only 0.15 wt%,which is much lower than that of PA6/PS/CB.Moreover,the PTC(positive temperature coefficient) intensity of PA6/PS/(SMA-CB) composites was stronger than that of PA6/PS/CB and the negative temperature coefficient(NTC) effect was eliminated.The electrical properties of PA6/PS/(SMA-CB) were explained in terms of its special interface morphology:SMA and CB localize at interphase to form the conductive pathways.