Herpes simplex viruses (HSV-1 and HSV-2) cause global morbidity and synergistically correlate with HIV infection. HSV exists life-long in a latent form in sensory neurons with intermittent reactivation, in despite o...Herpes simplex viruses (HSV-1 and HSV-2) cause global morbidity and synergistically correlate with HIV infection. HSV exists life-long in a latent form in sensory neurons with intermittent reactivation, in despite of host immune surveillatlce. While abundant evidence for HSV interfering with innate immune responses so as to favor the replication and propagation of the virus, several lines of evidence declare that HSV attenuates adaptive immunity by various mechanisms, including but not limited to the ablation of antigen presentation, induction of apoptosis, and interruption of cellular signaling. In this review, we will focus on the perturbative role of HSV in T cells signaling.展开更多
DNA microarrays have been acknowledged to represent a promising approach for the detection of viral pathogens. However, the probes designed for current arrays could cover only part of the given viral variants, that co...DNA microarrays have been acknowledged to represent a promising approach for the detection of viral pathogens. However, the probes designed for current arrays could cover only part of the given viral variants, that could result in false-negative or ambiguous data. If all the variants are to be covered, the requirement for more probes would render much higher spot density and thus higher cost of the arrays. Here we have developed a new strategy for oligonucleotide probe design. Using type I human immunodeficiency virus (HIV-1) tat gene as an example, we designed the array probes and validated the optimized parameters in silico. Results show that the oligo number is significantly reduced comparing with the existing methods, while specificity and hybridization efficiency remain intact. The adoption of this method in reducing the oligo numbers could increase the detection capacity for DNA microarrays, and would significantly lower the manufacturing cost for making array chips.展开更多
基金National Natural Science Foundation of China (30670080)Ministry of Science and Technology of China (2007CB914800,2006CB910103)
文摘Herpes simplex viruses (HSV-1 and HSV-2) cause global morbidity and synergistically correlate with HIV infection. HSV exists life-long in a latent form in sensory neurons with intermittent reactivation, in despite of host immune surveillatlce. While abundant evidence for HSV interfering with innate immune responses so as to favor the replication and propagation of the virus, several lines of evidence declare that HSV attenuates adaptive immunity by various mechanisms, including but not limited to the ablation of antigen presentation, induction of apoptosis, and interruption of cellular signaling. In this review, we will focus on the perturbative role of HSV in T cells signaling.
基金Research funding for undergraduate students of Nankai UniversityNSFC grant (30270308)+1 种基金NSFC grant (30370053)Tianjin grant (05YFJZJC01301).
文摘DNA microarrays have been acknowledged to represent a promising approach for the detection of viral pathogens. However, the probes designed for current arrays could cover only part of the given viral variants, that could result in false-negative or ambiguous data. If all the variants are to be covered, the requirement for more probes would render much higher spot density and thus higher cost of the arrays. Here we have developed a new strategy for oligonucleotide probe design. Using type I human immunodeficiency virus (HIV-1) tat gene as an example, we designed the array probes and validated the optimized parameters in silico. Results show that the oligo number is significantly reduced comparing with the existing methods, while specificity and hybridization efficiency remain intact. The adoption of this method in reducing the oligo numbers could increase the detection capacity for DNA microarrays, and would significantly lower the manufacturing cost for making array chips.