The non-stoichiometric Li_(3)Mg_(2)Sb_(1-x)O_(6)(0.05≤x≤0.125)compounds have been prepared via the mixed oxide method.The influences of Sb nonstoichiometry on the sintering behavior,microstructure,phase composition ...The non-stoichiometric Li_(3)Mg_(2)Sb_(1-x)O_(6)(0.05≤x≤0.125)compounds have been prepared via the mixed oxide method.The influences of Sb nonstoichiometry on the sintering behavior,microstructure,phase composition along with microwave dielectric performances for Li_(3)Mg_(2)Sb_(1-x)O_(6) ceramics were studied.Combined with X-ray diffraction(XRD)and Raman spectra,it was confirmed that phase composition could not be affected by the Sb nonstoichiometry and almost pure phase Li_(3)Mg_(2)SbO_(6) was formed in all compositions.Appropriate Sb-deficiency in Li_(3)Mg_(2)SbO_(6) not only lowered its sintering temperature but also remarkably improved its Q×f value.In particular,non-stoichiometric Li_(3)Mg_(2)Sb_(0.9)O_(6) ceramics sintered at 1250℃/5 h owned seldom low dielectric constant ε_(r)=10.8,near-zero resonant frequency temperature coefficient τ_(f)=-8.0 ppm/℃,and high quality factor Q×f=86,300 GHz(at 10.4 GHz).This study provides an alternative approach to ameliorate its dielectric performances for Li_(3)Mg_(2)SbO_(6)-based compounds through defect-engineering.展开更多
基金support from the National Natural Science Foundation of China (Grant No.51402235)China Postdoctoral Science Foundation (2015M582696)+2 种基金Science and Technology Plan Project of Xi’an Bureau of Science and Technology (GXYD17.19)Education Department of Shaanxi Province (18JK0711)Innovation Funds of Graduate Programs of Xi’an University of Posts and Telecommunications (CXJJLD2019020)
文摘The non-stoichiometric Li_(3)Mg_(2)Sb_(1-x)O_(6)(0.05≤x≤0.125)compounds have been prepared via the mixed oxide method.The influences of Sb nonstoichiometry on the sintering behavior,microstructure,phase composition along with microwave dielectric performances for Li_(3)Mg_(2)Sb_(1-x)O_(6) ceramics were studied.Combined with X-ray diffraction(XRD)and Raman spectra,it was confirmed that phase composition could not be affected by the Sb nonstoichiometry and almost pure phase Li_(3)Mg_(2)SbO_(6) was formed in all compositions.Appropriate Sb-deficiency in Li_(3)Mg_(2)SbO_(6) not only lowered its sintering temperature but also remarkably improved its Q×f value.In particular,non-stoichiometric Li_(3)Mg_(2)Sb_(0.9)O_(6) ceramics sintered at 1250℃/5 h owned seldom low dielectric constant ε_(r)=10.8,near-zero resonant frequency temperature coefficient τ_(f)=-8.0 ppm/℃,and high quality factor Q×f=86,300 GHz(at 10.4 GHz).This study provides an alternative approach to ameliorate its dielectric performances for Li_(3)Mg_(2)SbO_(6)-based compounds through defect-engineering.