Heteroatom doping, especially dual-doped carbon materials have attracted much attention for the past few years, and have been regarded as one of the most efficient strategies to enhance the capacitance behavior of por...Heteroatom doping, especially dual-doped carbon materials have attracted much attention for the past few years, and have been regarded as one of the most efficient strategies to enhance the capacitance behavior of porous carbon materials. In this work, a facile two-step synthetic route was developed to fab- ricate nitrogen and sulfur co-doped carbon microsphere (NSCM) by using thiourea as dopant. The NJS doping content is controlled via varying the carbonization temperature. It has been proved that a suitable quantity of N and S groups could not only provide pseudo-capacitance but also promote the electron transfer for carbon materials, which ensures the further utilization of the exposed surfaces for charge storage. The optimized NSCM prepared at a carbonization temperature of 800 ℃ (NSCM-800) achieves a capacitance of 277.1 F g^-1 at a current density of 0.3 A g^-1 in 6.0 mol L^-1 KOH electrolyte, which is 71% higher than that of undoped carbon microsphere. Besides, NSCM-800 shows an excellent cycling stability, 98.2% of the initial capacitance is retained after 5,000 cvcles at a current densitv of 3.0 A g^-1.展开更多
Molybdenum carbides(Mo_xC)/nitrogen doped carbon nanosheets(NCS) composites are synthesized via simple mixing melamine and ammonia molybdate, followed by a high-temperature treatment. Metal carbide nanoparticles with ...Molybdenum carbides(Mo_xC)/nitrogen doped carbon nanosheets(NCS) composites are synthesized via simple mixing melamine and ammonia molybdate, followed by a high-temperature treatment. Metal carbide nanoparticles with ultra-small size(13nm) are uniformly supported on nitrogen doped carbon nanosheets. The hydrogen evolution reaction(HER) is investigated in both 0.5 mol/L H_2SO_4 and 1 mol/L KOH media. Mo_2C/NCS-10(melamine/ammonia molybdate weight ratio of 10:1) exhibits excellent performance with a low overpotential of 130 mV in 0.5 mol/L H_2SO_4 solution and 108 mVin 1mol/L KOH solution at the current density of 10 mA/cm^2. The better electrocatalytic activity could be ascribed to Ndoped carbon nanosheets, small particle size, mesoporous structure, and large specific surface area,which could provide the large electrochemical active surface area and facilitate mass transport.展开更多
Developing porous carbon materials with low-cost, sustainable and eco-friendly natural resources is emerging as an ever important research field in the application of high-performance supercapacitor. In this paper, a ...Developing porous carbon materials with low-cost, sustainable and eco-friendly natural resources is emerging as an ever important research field in the application of high-performance supercapacitor. In this paper, a simple synthetic method to fabricate nitrogen doped porous carbon (NPC) is developed via a one-pot carbonization of sodium alginate and urea. The as-prepared NPC annealed at 700℃ with meso- and macro-porous structure exhibits excellent specific capacitance (180.2 F/g at 1 A/g) and superior cycling life when serves as electrode materials for supercapacitor. Moreover, the investigation on the annealing temperature demonstrates that NPC pyrolysis at 700℃ possesses relatively high pyrrole nitrogen and pyridine nitrogen, which is favorable for enhancing supercapacitor performance. This work extends biomass derived carbon materials in energy storage applications.展开更多
基金supported by the National Natural Science Foundation of China(21306060,21573083)the Program for New Century Excellent Talents in Universities of China(NCET-13-0237)+3 种基金the Doctoral Fund of Ministry of Education of China(20130142120039)the Thousand Talents Plan,and the Initiatory Financial Support from Huazhong University of Science and Technology(HUST)Analytical and Testing Center of Huazhong University of Science and Technologythe support of the China Scholarship Council(CSC)
文摘Heteroatom doping, especially dual-doped carbon materials have attracted much attention for the past few years, and have been regarded as one of the most efficient strategies to enhance the capacitance behavior of porous carbon materials. In this work, a facile two-step synthetic route was developed to fab- ricate nitrogen and sulfur co-doped carbon microsphere (NSCM) by using thiourea as dopant. The NJS doping content is controlled via varying the carbonization temperature. It has been proved that a suitable quantity of N and S groups could not only provide pseudo-capacitance but also promote the electron transfer for carbon materials, which ensures the further utilization of the exposed surfaces for charge storage. The optimized NSCM prepared at a carbonization temperature of 800 ℃ (NSCM-800) achieves a capacitance of 277.1 F g^-1 at a current density of 0.3 A g^-1 in 6.0 mol L^-1 KOH electrolyte, which is 71% higher than that of undoped carbon microsphere. Besides, NSCM-800 shows an excellent cycling stability, 98.2% of the initial capacitance is retained after 5,000 cvcles at a current densitv of 3.0 A g^-1.
基金supported by the National Natural Science Foundation (No. 21706086)
文摘Molybdenum carbides(Mo_xC)/nitrogen doped carbon nanosheets(NCS) composites are synthesized via simple mixing melamine and ammonia molybdate, followed by a high-temperature treatment. Metal carbide nanoparticles with ultra-small size(13nm) are uniformly supported on nitrogen doped carbon nanosheets. The hydrogen evolution reaction(HER) is investigated in both 0.5 mol/L H_2SO_4 and 1 mol/L KOH media. Mo_2C/NCS-10(melamine/ammonia molybdate weight ratio of 10:1) exhibits excellent performance with a low overpotential of 130 mV in 0.5 mol/L H_2SO_4 solution and 108 mVin 1mol/L KOH solution at the current density of 10 mA/cm^2. The better electrocatalytic activity could be ascribed to Ndoped carbon nanosheets, small particle size, mesoporous structure, and large specific surface area,which could provide the large electrochemical active surface area and facilitate mass transport.
基金supported by the National Natural Science Foundation(No.21573083)the Program for New Century Excellent Talents in Universities of China(No.NCET-13-0237)+2 种基金the Fundamental Research Funds for the Central University(Nos.2013TS136,2014YQ009)1000 Young Talent(to Deli Wang)initiatory financial support from Huazhong University of Science and Technology(HUST)
文摘Developing porous carbon materials with low-cost, sustainable and eco-friendly natural resources is emerging as an ever important research field in the application of high-performance supercapacitor. In this paper, a simple synthetic method to fabricate nitrogen doped porous carbon (NPC) is developed via a one-pot carbonization of sodium alginate and urea. The as-prepared NPC annealed at 700℃ with meso- and macro-porous structure exhibits excellent specific capacitance (180.2 F/g at 1 A/g) and superior cycling life when serves as electrode materials for supercapacitor. Moreover, the investigation on the annealing temperature demonstrates that NPC pyrolysis at 700℃ possesses relatively high pyrrole nitrogen and pyridine nitrogen, which is favorable for enhancing supercapacitor performance. This work extends biomass derived carbon materials in energy storage applications.