The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area d...The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area downstream. The concept covers the cemented sand, gravel, and rock dam (CSGRD), the rockfill concrete (RFC) dam (or the cemented rockfill dam, CRD), and the cemented soil dam (CSD). This paper summarizes the concept and principles of the CMD based on studies and practices in projects around the world. It also introduces new developments in the CSGRD, CRD, and CSD.展开更多
Grasslands play a key role in both carbon and water cycles.In semi-arid and arid grassland areas,the frequency and intensity of droughts are increasing.However,the influence of a drought on grassland carbon cycling is...Grasslands play a key role in both carbon and water cycles.In semi-arid and arid grassland areas,the frequency and intensity of droughts are increasing.However,the influence of a drought on grassland carbon cycling is still unclear.In this paper,the relationship between drought and grassland carbon cycling is described from the perspective of drought intensity,frequency,duration,and timing.Based on a large amount of literature,we determined that drought is one of the most prominent threats to grassland carbon cycling,although the impacts of different drought conditions are uncertain.The effects of a drought on grassland carbon cycling are more or less altered by drought-induced disturbances,whether individually or in combination.Additionally,a new conceptual model is proposed to better explain the mechanism of droughts on grassland carbon cycling.At present,evaluations of the effects of droughts on grassland carbon cycling are mainly qualitative.A data fusion model is indispensable for evaluating the fate of carbon cycling in a sustainable grassland system facing global change.In the future,multi-source data and models,based on the development of single and multiple disturbance experiments at the ecosystem level,can be utilized to systematically evaluate drought impacts on grassland carbon cycling at different timescales.Furthermore,more advanced models should be developed to address extreme drought events and their consequences on energy,water,and carbon cycling.展开更多
文摘The first author proposed the concept of the cemented material dam (CMD) in 2009. This concept was aimed at building an environmentally friendly dam in a safer and more economical way for both the dam and the area downstream. The concept covers the cemented sand, gravel, and rock dam (CSGRD), the rockfill concrete (RFC) dam (or the cemented rockfill dam, CRD), and the cemented soil dam (CSD). This paper summarizes the concept and principles of the CMD based on studies and practices in projects around the world. It also introduces new developments in the CSGRD, CRD, and CSD.
基金This research was supported by National Natural Science Foundation of China(Grant Nos.41601569 and 51779269)National Key R&D Program of China(Nos.2017YFC1502404 and 2017YFB0503005)IWHR Research&Development Support Program(No.JZ0145B-612016)
文摘Grasslands play a key role in both carbon and water cycles.In semi-arid and arid grassland areas,the frequency and intensity of droughts are increasing.However,the influence of a drought on grassland carbon cycling is still unclear.In this paper,the relationship between drought and grassland carbon cycling is described from the perspective of drought intensity,frequency,duration,and timing.Based on a large amount of literature,we determined that drought is one of the most prominent threats to grassland carbon cycling,although the impacts of different drought conditions are uncertain.The effects of a drought on grassland carbon cycling are more or less altered by drought-induced disturbances,whether individually or in combination.Additionally,a new conceptual model is proposed to better explain the mechanism of droughts on grassland carbon cycling.At present,evaluations of the effects of droughts on grassland carbon cycling are mainly qualitative.A data fusion model is indispensable for evaluating the fate of carbon cycling in a sustainable grassland system facing global change.In the future,multi-source data and models,based on the development of single and multiple disturbance experiments at the ecosystem level,can be utilized to systematically evaluate drought impacts on grassland carbon cycling at different timescales.Furthermore,more advanced models should be developed to address extreme drought events and their consequences on energy,water,and carbon cycling.