Layer-number modulation in graphene has become a recent focus of research due to the superior degree of freedom that can be achieved in terms of magic-angle,wettability,superconductivity,and superlattices.However,the ...Layer-number modulation in graphene has become a recent focus of research due to the superior degree of freedom that can be achieved in terms of magic-angle,wettability,superconductivity,and superlattices.However,the intrinsic transport of multilayer graphene is indistinguishable in atmospheric adsorbates and supporting environment,and its underlying charge transfer mechanism has not yet been thoroughly determined.In this study,a shift in the charge neutrality point of trilayer graphene(TLG)is demonstrated to be regulated by three governing factors:oxygen gas(O_(2)),water molecules(H_(2)O),and thermally activated electrons.Absorbed O_(2) induces a high work function in semimetallic TLG,while H_(2)O is not an evident dopant but can strengthen binding against O_(2) desorption.A simplified model is developed to elucidate the competitive mechanism and charge transfer among these two dopants(O_(2),H_(2)O)and thermal electrons,and the model is demonstrated by work function regulation and Bader charge transfer based on density functional theory calculations.This study provides a strategy to explore transport modulation of multilayer graphene in the fields of ballistic transport and low power consumption of graphene field-effect transistors.展开更多
Willemite Zn_(2)SiO_(4)crystallizes in such a way that Zn and Si are tetrahedrally coordinated with O in an ionic–covalent manner to form ZnO_(4)and SiO_(4)tetrahedra as the building units.The tetrahedra are corner-s...Willemite Zn_(2)SiO_(4)crystallizes in such a way that Zn and Si are tetrahedrally coordinated with O in an ionic–covalent manner to form ZnO_(4)and SiO_(4)tetrahedra as the building units.The tetrahedra are corner-sharing,of which one SiO_(4)tetrahedron connects eight ZnO_(4)tetrahedra,and one ZnO_(4)tetrahedron links four ZnO_(4)tetrahedra and four SiO_(4)tetrahedra.The unique crystallographic configuration gives rise to parallel tunnels with a diameter of 5.7Åalong the c-axis direction.The tunnel structure of Zn_(2)SiO_(4)definitely correlates with its interesting elastic and thermal properties.On the one hand,the elastic modulus,coefficient of thermal expansion(CTE),and thermal conductivity are low.Zn_(2)SiO_(4)has low Vickers hardness of 6.6 GPa at 10 N and low thermal conductivity of 2.34 W/(m·K)at 1073 K.On the other hand,the elastic modulus and CTE along the c-axis are significantly larger than those along the a-and b-axes,showing obvious elastic and thermal expansion anisotropy.Specifically,the Young’s modulus along the z direction(Ez=179 GPa)is almost twice those in the x and y directions(Ex=Ey=93 GPa).The high thermal expansion anisotropy is ascribed to the empty tunnels along the c-axis,which are capable of more accommodating the thermal expansion along the a-and b-axes.The striking properties of Zn_(2)SiO_(4)in elastic modulus,hardness,CTE,and thermal conductivity make it much useful in various fields of ceramics,such as low thermal expansion,thermal insulation,and machining tools.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12064047,11864044,11704330,and 11564043)the Key and General Program of Yunnan Fundamental Research Projects(Nos.202101AS070046 and 202001BB050051)The model software in this work is the Device Studio software package from Hongzhiwei.
文摘Layer-number modulation in graphene has become a recent focus of research due to the superior degree of freedom that can be achieved in terms of magic-angle,wettability,superconductivity,and superlattices.However,the intrinsic transport of multilayer graphene is indistinguishable in atmospheric adsorbates and supporting environment,and its underlying charge transfer mechanism has not yet been thoroughly determined.In this study,a shift in the charge neutrality point of trilayer graphene(TLG)is demonstrated to be regulated by three governing factors:oxygen gas(O_(2)),water molecules(H_(2)O),and thermally activated electrons.Absorbed O_(2) induces a high work function in semimetallic TLG,while H_(2)O is not an evident dopant but can strengthen binding against O_(2) desorption.A simplified model is developed to elucidate the competitive mechanism and charge transfer among these two dopants(O_(2),H_(2)O)and thermal electrons,and the model is demonstrated by work function regulation and Bader charge transfer based on density functional theory calculations.This study provides a strategy to explore transport modulation of multilayer graphene in the fields of ballistic transport and low power consumption of graphene field-effect transistors.
基金This work was supported by Shenyang National Laboratory for Materials Science,Institute of Metal Research,Chinese Academy of Sciences.
文摘Willemite Zn_(2)SiO_(4)crystallizes in such a way that Zn and Si are tetrahedrally coordinated with O in an ionic–covalent manner to form ZnO_(4)and SiO_(4)tetrahedra as the building units.The tetrahedra are corner-sharing,of which one SiO_(4)tetrahedron connects eight ZnO_(4)tetrahedra,and one ZnO_(4)tetrahedron links four ZnO_(4)tetrahedra and four SiO_(4)tetrahedra.The unique crystallographic configuration gives rise to parallel tunnels with a diameter of 5.7Åalong the c-axis direction.The tunnel structure of Zn_(2)SiO_(4)definitely correlates with its interesting elastic and thermal properties.On the one hand,the elastic modulus,coefficient of thermal expansion(CTE),and thermal conductivity are low.Zn_(2)SiO_(4)has low Vickers hardness of 6.6 GPa at 10 N and low thermal conductivity of 2.34 W/(m·K)at 1073 K.On the other hand,the elastic modulus and CTE along the c-axis are significantly larger than those along the a-and b-axes,showing obvious elastic and thermal expansion anisotropy.Specifically,the Young’s modulus along the z direction(Ez=179 GPa)is almost twice those in the x and y directions(Ex=Ey=93 GPa).The high thermal expansion anisotropy is ascribed to the empty tunnels along the c-axis,which are capable of more accommodating the thermal expansion along the a-and b-axes.The striking properties of Zn_(2)SiO_(4)in elastic modulus,hardness,CTE,and thermal conductivity make it much useful in various fields of ceramics,such as low thermal expansion,thermal insulation,and machining tools.