期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
受限体系聚合物扩散行为的研究进展 被引量:1
1
作者 张翠云 陈欣 +2 位作者 周娴婧 阳禹辉 王新平 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2020年第6期151-161,共11页
随着纳米技术的发展,纳米尺度聚合物材料的应用变得越来越普及,纳米尺度受限体系中聚合物分子链的扩散行为受到人们的广泛关注。由于受限效应,聚合物分子链的运动行为偏离本体,出现尺寸依赖性。研究受限体系中聚合物的扩散行为,对受限... 随着纳米技术的发展,纳米尺度聚合物材料的应用变得越来越普及,纳米尺度受限体系中聚合物分子链的扩散行为受到人们的广泛关注。由于受限效应,聚合物分子链的运动行为偏离本体,出现尺寸依赖性。研究受限体系中聚合物的扩散行为,对受限聚合物的结构设计及实际应用有十分重要的意义。文中从聚合物扩散基本理论出发,综述了近30年来聚合物分子链在不同维度受限体系中扩散行为的研究进展,介绍了不同受限状态下聚合物分子链扩散的物理机制、影响因素以及相关的理论模型,并对该领域进行了总结与展望。 展开更多
关键词 受限体系 聚合物扩散 扩散系数 相对分子质量
下载PDF
Weighted graph convolutional networks based on network node degree and efficiency
2
作者 Fenggao Niu Yanan Jiang cuiyun zhang 《Data Science and Informetrics》 2023年第4期75-85,共11页
In the study of graph convolutional networks,the information aggregation of nodes is important for downstream tasks.However,current graph convolutional networks do not differentiate the importance of different neighbo... In the study of graph convolutional networks,the information aggregation of nodes is important for downstream tasks.However,current graph convolutional networks do not differentiate the importance of different neighboring nodes from the perspective of network topology when ag-gregating messages from neighboring nodes.Therefore,based on network topology,this paper proposes a weighted graph convolutional network based on network node degree and efficiency(W-GCN)model for semi-supervised node classification.To distinguish the importance of nodes,this paper uses the degree and the efficiency of nodes in the network to construct the impor-tance matrix of nodes,rather than the adjacency matrix,which usually is a normalized symmetry Laplacian matrix in graph convolutional network.So that weights of neighbor nodes can be as-signed respectively in the process of graph convolution operation.The proposed method is ex-amined through several real benchmark datasets(Cora,CiteSeer and PubMed)in the experimen-tal part.And compared with the graph convolutional network method.The experimental results show that the W-GCN model proposed in this paper is better than the graph convolutional net-work model in prediction accuracy and achieves better results. 展开更多
关键词 Graph convolutional network Network efficiency Weighted graph convolutional neural network(W-GCN) Text classification
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部