期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Layered niobium carbide enabling excellent kinetics and cycling stability of Li-Mg-B-H hydrogen storage material Layered niobium carbide enabling excellent kinetics
1
作者 Li-Wen Lu Hui Luo +8 位作者 Guang-Xu Li Yun Li Xin-Hua Wang cun-ke huang Zhi-QiangLan Wen-Zheng Zhou Jin Guo Mohammad Ismail Hai-Zhen Liu 《Rare Metals》 SCIE EI CAS CSCD 2024年第3期1153-1166,共14页
The Li-Mg-B-H composite(2LiBH_(4)+MgH_(2))has a high capacity of 11.4 wt%as a hydrogen storage material.However,the slow kinetics and poor cycling stability severely restrict its practical applications.In this work,a ... The Li-Mg-B-H composite(2LiBH_(4)+MgH_(2))has a high capacity of 11.4 wt%as a hydrogen storage material.However,the slow kinetics and poor cycling stability severely restrict its practical applications.In this work,a layered Nb_(2)C MXene was first synthesized and then introduced to tailor the kinetics and cycling stability of the Li-Mg-B-H composite.The milled 2LiH+MgB_(2)composites were initially hydrogenated to obtain the 2LiBH_(4)+MgH_(2)composites.The 2LiBH_(4)+MgH_(2)+5wt%Nb_(2)C can release 9.0 wt%H_(2)in 30 min at 400℃,while it is only 2.7 wt%for the undoped 2LiBH_(4)+MgH_(2).The dehydrogenation activation energies of MgH_(2)and LiBH_(4)are 123 and 154 kJ·mol^(-1)respectively for the 5 wt%Nb_(2)C-doped composite,lower than the undoped composite(164 and 165 kJ·mol^(-1)).The 2LiBH_(4)+MgH_(2)+5 wt%Nb_(2)C possesses excellent cycling stability,with the reversible capacity only slightly reduced from 9.4 wt%for the 1st cycle to 9.3 wt%for the 20th cycle.Nb_(2)C keeps stable in the composite and acts as an efficient catalyst for the Li-Mg-B-H composite.It is believed that both the layered structure and the active Nb element contribu te to the enhanced hydrogen storage performances of the Li-Mg-B-H composite.This work confirms that the Nb_(2)C MXene with layered stru cture has a significant enhancing impact on the Li-Mg-B-H hydrogen storage materials,which is different from the bulk NbC. 展开更多
关键词 Hydrogen storage Lithium borohydride Magnesium hydride Nb_(2)C MXene
原文传递
Ti_(3)AICN MAX for tailoring MgH_(2) hydrogen storage material:from performance to mechanism 被引量:1
2
作者 Xing-Qing Duan Guang-Xu Li +12 位作者 Wen-Hui Zhang Hui Luo Hai-Mei Tang Li Xu Peng Sheng Xin-Hua Wang Xian-Tun huang cun-ke huang Zhi-Qiang Lan Wen-Zheng Zhou Jin Guo Mohammd Bin Ismail Hai-Zhen Liu 《Rare Metals》 SCIE EI CAS CSCD 2023年第6期1923-1934,共12页
Many MXenes are efficient catalysts for MgH_(2)hydrogen storage material.Nevertheless,the synthesis of MXenes should consume a large amount of corrosive HF to etch out the Al layers from the transition metal aluminum ... Many MXenes are efficient catalysts for MgH_(2)hydrogen storage material.Nevertheless,the synthesis of MXenes should consume a large amount of corrosive HF to etch out the Al layers from the transition metal aluminum carbides or nitrides(MAX) phases,which is environmentally unfriendly.In this work,Ti_(3)AlCN MAX without HFetching was employed directly to observably enhance the kinetics and the cycling stability of MgH_(2).With addition of10 wt% Ti_(3)AlCN,the onset dehydrogenation temperature of MgH2 was dropped from 320 to 205℃,and the rehydrogenation of MgH2 under 6 MPa H2 began at as low as50℃.Furthermore,at 300℃,it could provide 6.2 wt% of hydrogen in 10 min.Upon cycling,the composite underwent an activation process during the initial 40 cycles,with the reversible capacity increased from 4.7 wt% to 6.5 wt%.After that,the capacity showed almost no attenuation for up to 100 cycles.The enhancing effect of Ti_(3)AICN on MgH_(2) was comparable to many MXenes.It was demonstrated that Ti_(3)AICN did not destabilize MgH_(2) but acted as an efficient catalyst for MgH_(2).Ti_(3)AICN was observed to be the active sites for the nucleation and growth of MgH_(2)and might also help in dissociation and recombination of hydrogen molecules.Such two factors are believed to contribute to the improvement of MgH_(2).This study not only provides a promising strategy for improving the hydrogen storage performances of MgH_(2) by using noncorrosive MAX materials,but also adds evidence of nucleation and growth of MgH_(2) on a catalyst. 展开更多
关键词 Hydrogen storage Magnesium hydride MAX MXene Titanium aluminum carbonitride
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部