In order to have efficient and highly stereoselective cyclopropanating reagents, the cyclopropabation reaction of ethylene promoted with Samarium(Ⅱ) carbenoid [Simmons-Smith(SS)reagent] were studied by means of B...In order to have efficient and highly stereoselective cyclopropanating reagents, the cyclopropabation reaction of ethylene promoted with Samarium(Ⅱ) carbenoid [Simmons-Smith(SS)reagent] were studied by means of B3LYP hybrid density functional method. The geometries for reactants, transition states and products are completely optimized. All transition states were verified by the vibrational analysis and the intrinsic reaction coordinate (IRC) calculations. The results showed that, identical with the lithium carbenoid, CH3SmCH2X(X=Cl, Br and Ⅰ) can fairly react with ethylene via both methylene transfer pathway (pathway A) and carbometalation pathway (pathway B). And the cyclopropanation reaction via methylene transfer pathway proceeds with a lower barrier and at lower temperatures.展开更多
基金This work was supported by the Northwest Normal University Science Foundation of Gansu Province (No. NWNU-QN-2001-08).
文摘In order to have efficient and highly stereoselective cyclopropanating reagents, the cyclopropabation reaction of ethylene promoted with Samarium(Ⅱ) carbenoid [Simmons-Smith(SS)reagent] were studied by means of B3LYP hybrid density functional method. The geometries for reactants, transition states and products are completely optimized. All transition states were verified by the vibrational analysis and the intrinsic reaction coordinate (IRC) calculations. The results showed that, identical with the lithium carbenoid, CH3SmCH2X(X=Cl, Br and Ⅰ) can fairly react with ethylene via both methylene transfer pathway (pathway A) and carbometalation pathway (pathway B). And the cyclopropanation reaction via methylene transfer pathway proceeds with a lower barrier and at lower temperatures.