期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of electric/magnetic impact on the transient fracture of interface crack in piezoelectric-piezomagnetic sandwich structure: anti-plane case 被引量:3
1
作者 Xing ZHAO Zhenghua QIAN +1 位作者 Jinxi LIU cunfa gao 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第1期139-156,共18页
Due to the incompatibility of the interlaminar deformations,the interface debonding or cracking usually happens in a layered magnetoelectric(ME)structure under an applied load.In this paper,the transient responses of ... Due to the incompatibility of the interlaminar deformations,the interface debonding or cracking usually happens in a layered magnetoelectric(ME)structure under an applied load.In this paper,the transient responses of the anti-plane interface cracks in piezoelectric(PE)-piezomagnetic(PM)sandwich structures are studied by the standard methods of the integral transform and singular integral equation.Discussion on the numerical examples indicates that the PE-PM-PE structure under electric impact is more likely to fracture than the PM-PE-PM structure under a magnetic impact.The dynamic stress intensity factors(DSIFs)are more sensitive to the variation of the active layer thickness.The effects of the material constants on the DSIFs are dependent on the roles played by PE and PM media during the deformation process. 展开更多
关键词 piezoelectric(PE)-piezomagnetic(PM) sandwich structure interface crack transient response dynamic stress intensity factor(DSIF)
下载PDF
Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model 被引量:2
2
作者 Peng JIANG Hai QING cunfa gao 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第2期207-232,共26页
Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams... Several studies indicate that Eringen's nonlocal model may lead to some inconsistencies for both Euler-Bernoulli and Timoshenko beams, such as cantilever beams subjected to an end point force and fixed-fixed beams subjected a uniform distributed load. In this paper, the elastic buckling behavior of nanobeams, including both EulerBernoulli and Timoshenko beams, is investigated on the basis of a stress-driven nonlocal integral model. The constitutive equations are the Fredholm-type integral equations of the first kind, which can be transformed to the Volterra integral equations of the first kind. With the application of the Laplace transformation, the general solutions of the deflections and bending moments for the Euler-Bernoulli and Timoshenko beams as well as the rotation and shear force for the Timoshenko beams are obtained explicitly with several unknown constants. Considering the boundary conditions and extra constitutive constraints, the characteristic equations are obtained explicitly for the Euler-Bernoulli and Timoshenko beams under different boundary conditions, from which one can determine the critical buckling loads of nanobeams. The effects of the nonlocal parameters and buckling order on the buckling loads of nanobeams are studied numerically, and a consistent toughening effect is obtained. 展开更多
关键词 Laplace transformation Volterra INTEGRAL EQUATION FREDHOLM INTEGRAL EQUATION stress-driven NONLOCAL INTEGRAL model
下载PDF
Semi-analytic solution of Eringen's two-phase local/nonlocal model for Euler-Bernoulli beam with axial force 被引量:1
3
作者 Licheng MENG Dajun ZOU +4 位作者 Huan LAI Zili GUO Xianzhong HE Zhijun XIE cunfa gao 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第12期1805-1824,共20页
Eringen’s two-phase local/nonlocal model is applied to an Euler-Bernoulli nanobeam considering the bending-induced axial force, where the contribution of the axial force to bending moment is calculated on the deforme... Eringen’s two-phase local/nonlocal model is applied to an Euler-Bernoulli nanobeam considering the bending-induced axial force, where the contribution of the axial force to bending moment is calculated on the deformed state. Basic equations for the corresponding one-dimensional beam problem are obtained by degenerating from the three-dimensional nonlocal elastic equations. Semi-analytic solutions are then presented for a clamped-clamped beam subject to a concentrated force and a uniformly distributed load, respectively. Except for the traditional essential boundary conditions and those required to be satisfied by transferring an integral equation to its equivalent differential form, additional boundary conditions are needed and should be chosen with great caution, since numerical results reveal that non-unique solutions might exist for a nonlinear problem if inappropriate boundary conditions are used. The validity of the solutions is examined by plotting both sides of the original integro-differential governing equation of deflection and studying the error between both sides. Besides, an increase in the internal characteristic length would cause an increase in the deflection and axial force of the beam. 展开更多
关键词 nonlocal elasticity internal characteristic length size effect nanobeam axial force unique solution
下载PDF
Analytic solution for a circular nano-inhomogeneity in a finite matrix 被引量:1
4
作者 Shuang Wang Zengtao Chen cunfa gao 《Nano Materials Science》 CAS 2019年第2期116-120,共5页
The Gurtin-Murdoch model has found wide applications in analyzing the mechanical behaviors of nanocomposites with surface/interface effect. In the existing literature, the matrix is usually assumed to be infinite and ... The Gurtin-Murdoch model has found wide applications in analyzing the mechanical behaviors of nanocomposites with surface/interface effect. In the existing literature, the matrix is usually assumed to be infinite and the surface/interface effect is considered only at the inhomogeneity-matrix interface. This assumption is indeed valid as the matrix is usually at macroscale rather than nanoscale. However, if the size of the matrix decreases to the nanoscale too, the surface/interface effect will have to be considered at the outer boundary of the matrix. In this paper, the plane deformation of a circular nano-inhomogeneity embedded inside a finite circular matrix (which implies the matrix is also at nanoscale) is investigated. The stress boundary conditions are given at the inhomogeneity-matrix interface and the outer boundary of the matrix by the G-M model. The analytic solution for the stress field is finally obtained through the complex variable method. The results show that the stress field inside the inhomogeneity is still uniform (size-dependent) when the surface/interface effect is considered. In addition, the stress field inside the bulk (including the inhomogeneity and the matrix) can be influenced not only by the size and elastic constant of the inhomogeneity, but also by those of the matrix. 展开更多
关键词 PLANE problem NANOSCALE INHOMOGENEITY FINITE MATRIX Surface/interface effect Complex variable methods
下载PDF
Mechanical properties of multi-scale germanium specimens from space solar cells under electron irradiation
5
作者 Jian QIU Maliya HEINI +5 位作者 Jusha MA Wenjia HAN Xunchun WANG Jun YIN Yan SHI cunfa gao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期173-185,共13页
During long-term service in space,Gallium Arsenide(GaAs)solar cells are directly exposed to electron irradiation which usually causes a dramatic decrease in their performance.In the multilayer structure of solar cells... During long-term service in space,Gallium Arsenide(GaAs)solar cells are directly exposed to electron irradiation which usually causes a dramatic decrease in their performance.In the multilayer structure of solar cells,the germanium(Ge)layer occupies the majority of the thickness as the substrate.Due to the intrinsic brittleness of semiconductor material,there exist various defects during the preparation and assembly of solar cells,the influences of which tend to be intensified by the irradiation effect.In this work,first,Ge specimens for mechanical tests were prepared at scales from microscopic to macroscopic.Then,after different doses of electron irradiation,the mechanical properties of the Ge specimens were investigated.The experimental results demonstrate that electron irradiation has an obvious effect on the mechanical property variation of Ge in diverse scales.The four-point bending test indicates that the elastic modulus,fracture strength,and maximum displacement of the Ge specimens all increase,and reach the maximum value at the irradiation dose of 1×10^(15)e/cm^(2).The micrometer scale cantilever and nanoindentation tests present similar trends for Ge specimens after irradiation.Atomic Force Microscope(AFM)also observed the change in surface roughness.Finally,a fitting model was established to characterize the relation between modulus change and electron irradiation dose. 展开更多
关键词 Electron irradiation GERMANIUM Mechanical properties MULTI-SCALE Space solar cells
原文传递
Closed-Form Solution for a Circular Nanohole with Surface Effects Under Uniform Heat Flux
6
作者 Jieyao Tang Jieyan Zhao +1 位作者 Haibing Yang cunfa gao 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第1期43-52,共10页
This paper investigates the steady-state thermoelastic problem of a circular nanohole embedded in an infinitely large elastic plane subjected to a uniform far-field heat flux.A lowly conductive surface model is used t... This paper investigates the steady-state thermoelastic problem of a circular nanohole embedded in an infinitely large elastic plane subjected to a uniform far-field heat flux.A lowly conductive surface model is used to account for the effects of surface phonon scattering,while the complete Gurtin–Murdoch model is utilized to characterize the effects of surface tension and surface elasticity.The closed-form solution to the temperature and stress field surrounding the hole is derived in the context of complex variable methods.Several numerical examples are presented to analyze the influence of surface effects on thermal stress fields.It is shown that surface effects induce notable increases in normal and shear stresses around the hole.Specifically,all three stress components(hoop,normal,and shear)in the vicinity of the hole exhibit substantial augmentation with increasing surface tension and surface modulus.In particular,it is found that the presence of surface effects amplifies the variation in stress gradients and intensifies stress concentration around the hole. 展开更多
关键词 Circular nanohole Surface effect Thermal stress Heat flux
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部