Al-Si alloy coatings were prepared on AZ91HP magnesium alloy by broad-beam laser cladding; the influences of the powers on the microstructure and properties of the coatings were discussed. It was found that the micros...Al-Si alloy coatings were prepared on AZ91HP magnesium alloy by broad-beam laser cladding; the influences of the powers on the microstructure and properties of the coatings were discussed. It was found that the microstructure of the coatings at the powers of 3 and 3.5 kW was characterized by Mg2Si dendrites, and needle-like Mg2Al3 (hcp) dispersing in the Mg17Al12 matrix, whereas the coating at the power of 2.5 kW was composed of the petal-like Mg2Al3 (fcc) as well as the needle-like Mg2Al3 (hcp). The coating at the power of 4 kW appeared as α-Mg solid solution and Mg2Si, Mg17Al12, as well as Mg2Al3 (hcp). The coatings with the powers of 3 and 3.5 kW exhibited higher microhardness and better wear resistance because of more Mg2Si and Mg17Al12. However, the coating at the power of 2.5 kW displayed better corrosion resistance.展开更多
Biomedical Ti-Fe-Zr-Y alloys were prepared by 3D printing on pure titanium substrate. The influences of Zr on mechanical, forming, and biological properties of the alloys were investigated in detail. The results showe...Biomedical Ti-Fe-Zr-Y alloys were prepared by 3D printing on pure titanium substrate. The influences of Zr on mechanical, forming, and biological properties of the alloys were investigated in detail. The results showed that with increasing the Zr addition, the surface roughness, friction coefficient and worn volume decrease at first and then increase, the lowest values obtained at 5.86Zr addition. The ultimate compression stress and specific strength gradually decrease. The studied alloys have no cytotoxicity. They can promote the early adhesion and proliferation of cells. The eutectic alloy with 5.86 at.% Zr addition has the best ability of apatite deposition, it exhibits a better comprehensive performance among the studied alloys, which is superior to the Ti70.5Fe29.5 and Ti-6Al-4V alloys.展开更多
基金supported by the Chinese Post-Doctoral Fund (No.20070421011)the Jiangsu Province Post-Doctoral Fund (No.0702029B)
文摘Al-Si alloy coatings were prepared on AZ91HP magnesium alloy by broad-beam laser cladding; the influences of the powers on the microstructure and properties of the coatings were discussed. It was found that the microstructure of the coatings at the powers of 3 and 3.5 kW was characterized by Mg2Si dendrites, and needle-like Mg2Al3 (hcp) dispersing in the Mg17Al12 matrix, whereas the coating at the power of 2.5 kW was composed of the petal-like Mg2Al3 (fcc) as well as the needle-like Mg2Al3 (hcp). The coating at the power of 4 kW appeared as α-Mg solid solution and Mg2Si, Mg17Al12, as well as Mg2Al3 (hcp). The coatings with the powers of 3 and 3.5 kW exhibited higher microhardness and better wear resistance because of more Mg2Si and Mg17Al12. However, the coating at the power of 2.5 kW displayed better corrosion resistance.
基金supported financially by the National Natural Science Foundation of China (No. 51371041)
文摘Biomedical Ti-Fe-Zr-Y alloys were prepared by 3D printing on pure titanium substrate. The influences of Zr on mechanical, forming, and biological properties of the alloys were investigated in detail. The results showed that with increasing the Zr addition, the surface roughness, friction coefficient and worn volume decrease at first and then increase, the lowest values obtained at 5.86Zr addition. The ultimate compression stress and specific strength gradually decrease. The studied alloys have no cytotoxicity. They can promote the early adhesion and proliferation of cells. The eutectic alloy with 5.86 at.% Zr addition has the best ability of apatite deposition, it exhibits a better comprehensive performance among the studied alloys, which is superior to the Ti70.5Fe29.5 and Ti-6Al-4V alloys.