A new organic single crystal of β-Alanine Oxalate (BAO) has been grown from solution by slow evaporation technique. Transparent, colourless crystals of size upto 11 × 9 × 4 mm3 were obtained. Formation of t...A new organic single crystal of β-Alanine Oxalate (BAO) has been grown from solution by slow evaporation technique. Transparent, colourless crystals of size upto 11 × 9 × 4 mm3 were obtained. Formation of the new crystal has been confirmed by single crystal XRD and FTIR spectra. The grown crystals have been subjected to powder X-ray diffraction studies to identify the crystalline nature. Single crystal X-ray diffractometer was utilized to measure unit cell parameters and to confirm the crystal structure. BAO belongs to monoclinic system with lattice parameters a = 22.335 ?, b = 5.697 ?, c = 13.993 ?, α = 90?, β = 115.37?, γ = 90?, and volume of the unit cell, V = 1609 ?3. The functional groups are confirmed by FTIR vibrational analysis. Optical transmission spectra revealed the optical properties of the grown crystal. Transmission spectrum reveals that the crystal has low UV cut-off of 205 nm and has a good transmittance in the entire visible region enabling its use in optical applications. There is no absorption in the entire visible region. Mechanical strength of the grown material is tested by hardness studies. The value of hardness increases when the applied load is increased.展开更多
文摘A new organic single crystal of β-Alanine Oxalate (BAO) has been grown from solution by slow evaporation technique. Transparent, colourless crystals of size upto 11 × 9 × 4 mm3 were obtained. Formation of the new crystal has been confirmed by single crystal XRD and FTIR spectra. The grown crystals have been subjected to powder X-ray diffraction studies to identify the crystalline nature. Single crystal X-ray diffractometer was utilized to measure unit cell parameters and to confirm the crystal structure. BAO belongs to monoclinic system with lattice parameters a = 22.335 ?, b = 5.697 ?, c = 13.993 ?, α = 90?, β = 115.37?, γ = 90?, and volume of the unit cell, V = 1609 ?3. The functional groups are confirmed by FTIR vibrational analysis. Optical transmission spectra revealed the optical properties of the grown crystal. Transmission spectrum reveals that the crystal has low UV cut-off of 205 nm and has a good transmittance in the entire visible region enabling its use in optical applications. There is no absorption in the entire visible region. Mechanical strength of the grown material is tested by hardness studies. The value of hardness increases when the applied load is increased.