期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Power-expected-posterior prior Bayes factor consistency for nested linear models with increasing dimensions
1
作者 d.fouskakis J.K.Innocent L.Pericchi 《Statistical Theory and Related Fields》 2020年第2期162-171,共10页
The power-expected-posterior prior is used in this paper for comparing nested linear models.The asymptotic behaviour of the method is investigated for different values of the power parameter of the prior.Focus is give... The power-expected-posterior prior is used in this paper for comparing nested linear models.The asymptotic behaviour of the method is investigated for different values of the power parameter of the prior.Focus is given on the consistency of the Bayes factor of comparing the full model M_(p) versus a generic submodel M_(l).In each case,we allow the true generating model to be either M_(p) or M_(l) and we keep the dimension of M_(l) fixed,while the dimension of M_(p) can be either fixed or(grow as)O(n),with n denoting the sample size. 展开更多
关键词 Bayesian model selection Bayes factor CONSISTENCY expected-posterior prior Gaussian linear models increasing dimension power-expected-posterior prior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部