High temperature preheated and diluted air combustion has been confirmed as the technology, mainly applied to industrial furnaces and kilns, to realize higher thermal efficiency and lower emissions. The purpose of thi...High temperature preheated and diluted air combustion has been confirmed as the technology, mainly applied to industrial furnaces and kilns, to realize higher thermal efficiency and lower emissions. The purpose of this study was to investigate fundamental aspects of the above-mentioned combustion experimentally and to compare with those in ordinary hydrocarbon combustion with room temperature air. The test items were exhaust gas components of CO, NOx, flame shape and radical components of CH, OH and C2,which were measured with gas analyser, camera and ICCD(Intensified Charged - Coupled Device) camera. Many Phenomena as results appeared in combustion with the oxidizer, low oxygen concentration and extremely high temperature air, such as expansion of the flammable limits, increased flame propagation speed, it looked so strange as compared with those in existing combustion technology. We confirmed that such extraordinary phenomena were believable through the hot-test experiment.展开更多
文摘High temperature preheated and diluted air combustion has been confirmed as the technology, mainly applied to industrial furnaces and kilns, to realize higher thermal efficiency and lower emissions. The purpose of this study was to investigate fundamental aspects of the above-mentioned combustion experimentally and to compare with those in ordinary hydrocarbon combustion with room temperature air. The test items were exhaust gas components of CO, NOx, flame shape and radical components of CH, OH and C2,which were measured with gas analyser, camera and ICCD(Intensified Charged - Coupled Device) camera. Many Phenomena as results appeared in combustion with the oxidizer, low oxygen concentration and extremely high temperature air, such as expansion of the flammable limits, increased flame propagation speed, it looked so strange as compared with those in existing combustion technology. We confirmed that such extraordinary phenomena were believable through the hot-test experiment.