A quaternary super-ionic glass system xAgI: (95-x) [Ag2O:2V2O5]: 5TeO2, where 40 ≤ x ≤ 65 in steps of 5, has been pre- pared by melt quenching technique. The prepared glass samples are characterized by X-ray, FTIR a...A quaternary super-ionic glass system xAgI: (95-x) [Ag2O:2V2O5]: 5TeO2, where 40 ≤ x ≤ 65 in steps of 5, has been pre- pared by melt quenching technique. The prepared glass samples are characterized by X-ray, FTIR and DSC studies. As revealed by the FTIR spectra, the oxyanion network is not affected by the addition of AgI. The frequency dependence of the electrical conductivity for various glass compositions at different temperatures has been analyzed in terms of Jon- scher’s universal power law. The measurements reveal that the conductivity increases from σ = 7.62 × 10–7 S/cm to 1.15 × 10–4 S/cm with increasing AgI content. The temperature dependent conductivity obeys the Arrhenius relationship. The impedance and modulus studies indicate the non-debye type of the frequency dispersion for all the glass samples.展开更多
A superionic mixed metal iodide glass system [(PbI2 –CuI ) - Ag2O- V2O5- B2O3] has been prepared by splat quenching technique. The prepared glass samples are characterized by X-ray diffraction (XRD) and differential ...A superionic mixed metal iodide glass system [(PbI2 –CuI ) - Ag2O- V2O5- B2O3] has been prepared by splat quenching technique. The prepared glass samples are characterized by X-ray diffraction (XRD) and differential scanning calo- rimetry (DSC). The effect of mixed metal iodide salts concentration on electrical properties has been investigated by the complex impedance spectroscopy (CIS). AC conductivity analysis is carried out in the frequency range of 2MHz-1Hz at different temperatures and an enhancement in the conductivity with iodide salts is the main feature of the observed re- sults with an anomaly at 20 mole % of PbI2 –CuI.展开更多
文摘A quaternary super-ionic glass system xAgI: (95-x) [Ag2O:2V2O5]: 5TeO2, where 40 ≤ x ≤ 65 in steps of 5, has been pre- pared by melt quenching technique. The prepared glass samples are characterized by X-ray, FTIR and DSC studies. As revealed by the FTIR spectra, the oxyanion network is not affected by the addition of AgI. The frequency dependence of the electrical conductivity for various glass compositions at different temperatures has been analyzed in terms of Jon- scher’s universal power law. The measurements reveal that the conductivity increases from σ = 7.62 × 10–7 S/cm to 1.15 × 10–4 S/cm with increasing AgI content. The temperature dependent conductivity obeys the Arrhenius relationship. The impedance and modulus studies indicate the non-debye type of the frequency dispersion for all the glass samples.
文摘A superionic mixed metal iodide glass system [(PbI2 –CuI ) - Ag2O- V2O5- B2O3] has been prepared by splat quenching technique. The prepared glass samples are characterized by X-ray diffraction (XRD) and differential scanning calo- rimetry (DSC). The effect of mixed metal iodide salts concentration on electrical properties has been investigated by the complex impedance spectroscopy (CIS). AC conductivity analysis is carried out in the frequency range of 2MHz-1Hz at different temperatures and an enhancement in the conductivity with iodide salts is the main feature of the observed re- sults with an anomaly at 20 mole % of PbI2 –CuI.