A reactor core in a thorium molten salt reactor uses graphite as a moderator and reflector. The graphite core is a multi-layered arrangement of graphite bricks that are loosely connected to each other using a system o...A reactor core in a thorium molten salt reactor uses graphite as a moderator and reflector. The graphite core is a multi-layered arrangement of graphite bricks that are loosely connected to each other using a system of keys and dowels. Consequently, the graphite core is a type of discrete stack structure with highly nonlinear dynamic behavior. Hence, it is important to investigate the dynamic characteristics of the graphite core. In this study, a threedimensional single-layer graphite core model, which is a part of the thorium molten salt reactor side reflector structure, was analyzed using the explicit method in ABAQUS 2016 to study the core dynamic behavior when subjected to different excitations. The design parameters,such as the diameter of the dowel, the gap between key and keyway and the bypass flow gap between two adjacent bricks, were also considered in this model. To reduce excessive demands on available computational resources considering the effect of molten salt, the spring–dashpot model was applied to model the interaction forces between the molten salt and graphite bricks. Numerical simulation results show that the effect of molten salt is a reduction inthe peak maximal principal stress, and a larger gap between two bricks is beneficial to maintain the integrity of the graphite core under earthquake loading. The results obtained by the simulation can be used as a reference for future designs of a molten salt graphite core.展开更多
As essential elements of the graphite reflector in thorium-based molten salt reactor,dowel–brick structures are used to withstand complex working loads in the reactor core and their failure may lead to serious damage...As essential elements of the graphite reflector in thorium-based molten salt reactor,dowel–brick structures are used to withstand complex working loads in the reactor core and their failure may lead to serious damage of the graphite reactor core.It is crucial to investigate the stress behavior of dowel–brick structures for safe operation of the graphite reactor.In this study,three groups of finite element analyses and a strain test were carried out to investigate how the geometric parameters of the dowels affect the stress behavior of the dowel–brick structure.The numerical results indicate that the stress behavior of a dowel–brick structure is significantly affected by the diameter,length,and aspect ratio of the dowels.The maximum stress in the lower and upper bricks decreases with an increase in the dowel length.The location of maximum stress on both lower and upper bricks shifts from the root of the socket to the edge of that socket beside the contact region,as the length of the dowel increases.The shift of the maximum stress location occurs earlier for the upper bricks than for the lower bricks.The results of strain tests show good agreement with those of numerical analyses.展开更多
Welding solidification cracking of alloys is associated with the range of solidification temperature that can be greatly affected by the amount of refractory metals and other additives. In this work, solidification cr...Welding solidification cracking of alloys is associated with the range of solidification temperature that can be greatly affected by the amount of refractory metals and other additives. In this work, solidification cracking of Ni-28W-6Cr alloy with high W content was studied by gas tungsten arc welding, showing that the welding current, alloying elements and precipitates all affect the cracking susceptibility. The lengths of cracks increase linearly with the welding current in the range from 150 to 250 A. The relatively high cracking susceptibility is mainly attributed to the high content of Si, which tends to segregate with other elements including W, Cr, Mn as films or components with low melting point in the last solidification stage and weaken the binding force of grain boundaries. Moreover, the existence of precipitated continuous eutectic M_6C carbides in the grain boundaries also acts as nucleation sites of crack initiation, and the cracks often propagate along solidification grain boundary.展开更多
Microstructure and mechanical properties of Ni-28W-6Cr alloy-welded joints produced by gas tungsten arc welding were investigated in this work.Results showed that original fine-grain base metal near fusion line totall...Microstructure and mechanical properties of Ni-28W-6Cr alloy-welded joints produced by gas tungsten arc welding were investigated in this work.Results showed that original fine-grain base metal near fusion line totally transformed into coarse heat affected zone after welding.Carbides with different shapes were found in the weld metal and base metal,which all were determined as M6C carbides.In comparison with carbides in base metal,M6C carbides in weld metal are rich in Si and Cr but deficient in W.Moreover,M6C carbides are extremely scarce and hard to be detected in weld metal.Mechanical tests show that the hardness value of weld metal is only about 60%of base metal;the yield strength and tensile strength of welded joint are much lower than those of base metal due to the absence of carbides in weld metal.展开更多
基金supported by the“Hundred Talent Program”of the Chinese Academy of Sciences,the Ministry of Human Resources and Social Security(No.Y419016031)the Strategic Priority Research Program of Chinese Academy of Science(No.XDA02040100)
文摘A reactor core in a thorium molten salt reactor uses graphite as a moderator and reflector. The graphite core is a multi-layered arrangement of graphite bricks that are loosely connected to each other using a system of keys and dowels. Consequently, the graphite core is a type of discrete stack structure with highly nonlinear dynamic behavior. Hence, it is important to investigate the dynamic characteristics of the graphite core. In this study, a threedimensional single-layer graphite core model, which is a part of the thorium molten salt reactor side reflector structure, was analyzed using the explicit method in ABAQUS 2016 to study the core dynamic behavior when subjected to different excitations. The design parameters,such as the diameter of the dowel, the gap between key and keyway and the bypass flow gap between two adjacent bricks, were also considered in this model. To reduce excessive demands on available computational resources considering the effect of molten salt, the spring–dashpot model was applied to model the interaction forces between the molten salt and graphite bricks. Numerical simulation results show that the effect of molten salt is a reduction inthe peak maximal principal stress, and a larger gap between two bricks is beneficial to maintain the integrity of the graphite core under earthquake loading. The results obtained by the simulation can be used as a reference for future designs of a molten salt graphite core.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA02010000).
文摘As essential elements of the graphite reflector in thorium-based molten salt reactor,dowel–brick structures are used to withstand complex working loads in the reactor core and their failure may lead to serious damage of the graphite reactor core.It is crucial to investigate the stress behavior of dowel–brick structures for safe operation of the graphite reactor.In this study,three groups of finite element analyses and a strain test were carried out to investigate how the geometric parameters of the dowels affect the stress behavior of the dowel–brick structure.The numerical results indicate that the stress behavior of a dowel–brick structure is significantly affected by the diameter,length,and aspect ratio of the dowels.The maximum stress in the lower and upper bricks decreases with an increase in the dowel length.The location of maximum stress on both lower and upper bricks shifts from the root of the socket to the edge of that socket beside the contact region,as the length of the dowel increases.The shift of the maximum stress location occurs earlier for the upper bricks than for the lower bricks.The results of strain tests show good agreement with those of numerical analyses.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFB0700404)the National Natural Science Foundation of China(Grant Nos.51601213and 51501216)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA02004210)the Talent development fund of Shanghai(Grant No.201650)
文摘Welding solidification cracking of alloys is associated with the range of solidification temperature that can be greatly affected by the amount of refractory metals and other additives. In this work, solidification cracking of Ni-28W-6Cr alloy with high W content was studied by gas tungsten arc welding, showing that the welding current, alloying elements and precipitates all affect the cracking susceptibility. The lengths of cracks increase linearly with the welding current in the range from 150 to 250 A. The relatively high cracking susceptibility is mainly attributed to the high content of Si, which tends to segregate with other elements including W, Cr, Mn as films or components with low melting point in the last solidification stage and weaken the binding force of grain boundaries. Moreover, the existence of precipitated continuous eutectic M_6C carbides in the grain boundaries also acts as nucleation sites of crack initiation, and the cracks often propagate along solidification grain boundary.
基金funded by the National Natural Science Foundation of China (Grant No.51601213)National Key Research and Development Program of China (Grant No.2016YFB0700404)+1 种基金Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA02004210)Talent development fund of Shanghai (Grant No.201650)
文摘Microstructure and mechanical properties of Ni-28W-6Cr alloy-welded joints produced by gas tungsten arc welding were investigated in this work.Results showed that original fine-grain base metal near fusion line totally transformed into coarse heat affected zone after welding.Carbides with different shapes were found in the weld metal and base metal,which all were determined as M6C carbides.In comparison with carbides in base metal,M6C carbides in weld metal are rich in Si and Cr but deficient in W.Moreover,M6C carbides are extremely scarce and hard to be detected in weld metal.Mechanical tests show that the hardness value of weld metal is only about 60%of base metal;the yield strength and tensile strength of welded joint are much lower than those of base metal due to the absence of carbides in weld metal.