Lead-free dielectric ceramics can be used to make quick charge-discharge capacitor devices due to their high power density.Their use in advanced electronic systems,however,has been hampered by their poor energy storag...Lead-free dielectric ceramics can be used to make quick charge-discharge capacitor devices due to their high power density.Their use in advanced electronic systems,however,has been hampered by their poor energy storage performance(ESP),which includes low energy storage efficiency and recoverable energy storage density(Wrec).In this work,we adopted a combinatorial optimization strategy to improve the ESP in(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)-based relaxor ferroelectric ceramics.To begin,the Bi-containing complex ions Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)were introduced into a BNT-based matrix in order to improve the diffuse phase transition,increase Bi-O bond coupling,avoid macro domain development,and limit polarization response hysteresis.Second,the viscous polymer process was employed to reduce sample thickness and porosity,resulting in an apparent increase in breakdown strength in(1-x)[0.7(Bi_(1/2)Na_(1/2))TiO_(3)]-0.3SrTiO_(3)-xBi(Mg_(2/3)Nb_(1/3))O_(3)(BS-xBMN)ceramics.Finally,in x=0.20 composition,an amazing Wrecof 5.62 J·cm^(-3)and an ultra-high efficiency of 91.4%were simultaneously achieved at a relatively low field of 330 kV·cm^(-1),together with remarkable temperature stability in the temperature range of 30-140℃(3.5 J·cm^(-3)±5%variation).This research presents a new lead-free dielectric material with superior ESP for use in pulsed power capacitors.展开更多
Large electrostrains with high temperature stability and low hysteresis are essential for applications in high-precision actuator devices.However,achieving simultaneously all three of the aforementioned features in fe...Large electrostrains with high temperature stability and low hysteresis are essential for applications in high-precision actuator devices.However,achieving simultaneously all three of the aforementioned features in ferroelectric ceramics remains a considerable challenge.In this work,we firstly report a high unipolar electrostrain(0.12%at 60 kV/cm)in(1ex)NaNbO_(3)-x[(Ba0.85Ca0.15)(Zr_(0.1)Ti_(0.9))O_(3)](NN-xBCZT)ferroelectric polycrystalline ceramics with excellent thermal stability(variation less than 10%in the temperature range of 30-160℃)and ultra-low hysteresis(<6%).Secondly,the high-field electrostrain response is dominated by the intrinsic electrostrictive effect,which may account for more than 80%of the electrostrain.Furthermore,due to the thermal stability of the polarization in the pure tetragonal phase,the large electrostrain demonstrates extraordinarily high stability from room temperature to 140℃.Finally,in-situ piezoelectric force microscopy reveals ultra-highly stable domain structures,which also guarantee the thermal stability of the electrostrain in(NN-xBCZT ferroelectrics ceramics.This study not only clarifies the origin of thermally stable electrostrain in NN-xBCZT ferroelectric perovskite in terms of electrostrictive effect,but also provides ideas for developing applicable ferroelectric ceramic materials used in actuator devices with excellent thermal stability.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52172127)the International Cooperation Project of Shaanxi Province+4 种基金China(No.2022KWZ-22)the National Key Research and Development Program of China(Nos.2021YFE0115000,2021YFB3800602)the Fundamental Research Funds for the Central Universities(No.XJTU)the Natural Science Basis Research Plan in Shaanxi Province of China(No.2020JM-635)the Youth Innovation Team of Shaanxi Universities and Scientific Research Program Funded by Shaanxi Provincial Education Department(No.21JK0869)。
文摘Lead-free dielectric ceramics can be used to make quick charge-discharge capacitor devices due to their high power density.Their use in advanced electronic systems,however,has been hampered by their poor energy storage performance(ESP),which includes low energy storage efficiency and recoverable energy storage density(Wrec).In this work,we adopted a combinatorial optimization strategy to improve the ESP in(Bi_(0.5)Na_(0.5))TiO_(3)(BNT)-based relaxor ferroelectric ceramics.To begin,the Bi-containing complex ions Bi(Mg_(2/3)Nb_(1/3))O_(3)(BMN)were introduced into a BNT-based matrix in order to improve the diffuse phase transition,increase Bi-O bond coupling,avoid macro domain development,and limit polarization response hysteresis.Second,the viscous polymer process was employed to reduce sample thickness and porosity,resulting in an apparent increase in breakdown strength in(1-x)[0.7(Bi_(1/2)Na_(1/2))TiO_(3)]-0.3SrTiO_(3)-xBi(Mg_(2/3)Nb_(1/3))O_(3)(BS-xBMN)ceramics.Finally,in x=0.20 composition,an amazing Wrecof 5.62 J·cm^(-3)and an ultra-high efficiency of 91.4%were simultaneously achieved at a relatively low field of 330 kV·cm^(-1),together with remarkable temperature stability in the temperature range of 30-140℃(3.5 J·cm^(-3)±5%variation).This research presents a new lead-free dielectric material with superior ESP for use in pulsed power capacitors.
基金supported by the National Natural Science Foundation of China(Grant Nos.52172127 and 52072092)the International Cooperation Project of Shaanxi Province(Grant No.2022KWZ-22)+1 种基金the National Key Research and Development Program of China(Grant Nos.2021YFE0115000 and SQ2021YFB380003202)the Youth Innovation Team of Shaanxi Universities and Scientific Research Program Funded by Shaanxi Provincial Education Department(Grant No.21JP104)。
文摘Large electrostrains with high temperature stability and low hysteresis are essential for applications in high-precision actuator devices.However,achieving simultaneously all three of the aforementioned features in ferroelectric ceramics remains a considerable challenge.In this work,we firstly report a high unipolar electrostrain(0.12%at 60 kV/cm)in(1ex)NaNbO_(3)-x[(Ba0.85Ca0.15)(Zr_(0.1)Ti_(0.9))O_(3)](NN-xBCZT)ferroelectric polycrystalline ceramics with excellent thermal stability(variation less than 10%in the temperature range of 30-160℃)and ultra-low hysteresis(<6%).Secondly,the high-field electrostrain response is dominated by the intrinsic electrostrictive effect,which may account for more than 80%of the electrostrain.Furthermore,due to the thermal stability of the polarization in the pure tetragonal phase,the large electrostrain demonstrates extraordinarily high stability from room temperature to 140℃.Finally,in-situ piezoelectric force microscopy reveals ultra-highly stable domain structures,which also guarantee the thermal stability of the electrostrain in(NN-xBCZT ferroelectrics ceramics.This study not only clarifies the origin of thermally stable electrostrain in NN-xBCZT ferroelectric perovskite in terms of electrostrictive effect,but also provides ideas for developing applicable ferroelectric ceramic materials used in actuator devices with excellent thermal stability.