Wireless networks with no infrastructure arise as a result of multiple wireless devices working together.The Mobile Ad hoc Network(MANET)is a system for connecting independently located Mobile Nodes(MNs)via wireless l...Wireless networks with no infrastructure arise as a result of multiple wireless devices working together.The Mobile Ad hoc Network(MANET)is a system for connecting independently located Mobile Nodes(MNs)via wireless links.A MANET is self-configuring in telecommunications,while MN produces non-infrastructure networks that are entirely decentralized.Both the MAC and routing layers of MANETs take into account issues related to Quality of Service(QoS).When culling a line of optical discernment communication,MANET can be an effective and cost-saving route cull option.To maintain QoS,however,more or fewer challenges must be overcome.This paper proposes a Fuzzy Logic Control(FLC)methodology for specifying a probabilistic QoS guaranteed for MANETs.The framework uses network node mobility to establish the probabil-istic quality of service.Fuzzy Logic(FL)implementations were added to Network Simulator-3(NS-3)and used with the proposed FLC framework for simulation.Researchers have found that for a given node’s mobility,the path’s bandwidth decreases with time,hop count,and radius.It is resolutely based on this fuzzy rule that the priority index for a packet is determined.Also,by avoiding sending pack-ets(PKT)out of source networks when there are no beneficial routes,bandwidth is not wasted.The FLC outperforms the scheduling methods with a wide range of results.To improve QoS within MANETs,it is therefore recommended that FLC is used to synchronize packets.Thus,using these performance metrics,the QoS-responsible routing can opt for more stable paths.Based on network simulation,it is evident that incorporating QoS into routing protocols is meant to improve traf-fic performance,in particular authentic-time traffic.展开更多
Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood v...Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood vessels and the herculean task involved in glaucoma detection,the exactly affected site of the optic disc of whether small or big size cup,is deemed challenging.Spatially Based Ellipse Fitting Curve Model(SBEFCM)classification is suggested based on the Ensemble for a reliable diagnosis of Glaucomain theOptic Cup(OC)and Optic Disc(OD)boundary correspondingly.This research deploys the Ensemble Convolutional Neural Network(CNN)classification for classifying Glaucoma or Diabetes Retinopathy(DR).The detection of the boundary between the OC and the OD is performed by the SBEFCM,which is the latest weighted ellipse fitting model.The SBEFCM that enhances and widens the multi-ellipse fitting technique is proposed here.There is a preprocessing of input fundus image besides segmentation of blood vessels to avoid interlacing surrounding tissues and blood vessels.The ascertaining of OCandODboundary,which characterizedmany output factors for glaucoma detection,has been developed by EnsembleCNNclassification,which includes detecting sensitivity,specificity,precision,andArea Under the receiver operating characteristic Curve(AUC)values accurately by an innovative SBEFCM.In terms of contrast,the proposed Ensemble CNNsignificantly outperformed the current methods.展开更多
Recently,an innovative trend like cloud computing has progressed quickly in InformationTechnology.For a background of distributed networks,the extensive sprawl of internet resources on the Web and the increasing numbe...Recently,an innovative trend like cloud computing has progressed quickly in InformationTechnology.For a background of distributed networks,the extensive sprawl of internet resources on the Web and the increasing number of service providers helped cloud computing technologies grow into a substantial scaled Information Technology service model.The cloud computing environment extracts the execution details of services and systems from end-users and developers.Additionally,through the system’s virtualization accomplished using resource pooling,cloud computing resources become more accessible.The attempt to design and develop a solution that assures reliable and protected authentication and authorization service in such cloud environments is described in this paper.With the help of multi-agents,we attempt to represent Open-Identity(ID)design to find a solution that would offer trustworthy and secured authentication and authorization services to software services based on the cloud.This research aims to determine how authentication and authorization services were provided in an agreeable and preventive manner.Based on attack-oriented threat model security,the evaluation works.By considering security for both authentication and authorization systems,possible security threats are analyzed by the proposed security systems.展开更多
文摘Wireless networks with no infrastructure arise as a result of multiple wireless devices working together.The Mobile Ad hoc Network(MANET)is a system for connecting independently located Mobile Nodes(MNs)via wireless links.A MANET is self-configuring in telecommunications,while MN produces non-infrastructure networks that are entirely decentralized.Both the MAC and routing layers of MANETs take into account issues related to Quality of Service(QoS).When culling a line of optical discernment communication,MANET can be an effective and cost-saving route cull option.To maintain QoS,however,more or fewer challenges must be overcome.This paper proposes a Fuzzy Logic Control(FLC)methodology for specifying a probabilistic QoS guaranteed for MANETs.The framework uses network node mobility to establish the probabil-istic quality of service.Fuzzy Logic(FL)implementations were added to Network Simulator-3(NS-3)and used with the proposed FLC framework for simulation.Researchers have found that for a given node’s mobility,the path’s bandwidth decreases with time,hop count,and radius.It is resolutely based on this fuzzy rule that the priority index for a packet is determined.Also,by avoiding sending pack-ets(PKT)out of source networks when there are no beneficial routes,bandwidth is not wasted.The FLC outperforms the scheduling methods with a wide range of results.To improve QoS within MANETs,it is therefore recommended that FLC is used to synchronize packets.Thus,using these performance metrics,the QoS-responsible routing can opt for more stable paths.Based on network simulation,it is evident that incorporating QoS into routing protocols is meant to improve traf-fic performance,in particular authentic-time traffic.
文摘Irretrievable loss of vision is the predominant result of Glaucoma in the retina.Recently,multiple approaches have paid attention to the automatic detection of glaucoma on fundus images.Due to the interlace of blood vessels and the herculean task involved in glaucoma detection,the exactly affected site of the optic disc of whether small or big size cup,is deemed challenging.Spatially Based Ellipse Fitting Curve Model(SBEFCM)classification is suggested based on the Ensemble for a reliable diagnosis of Glaucomain theOptic Cup(OC)and Optic Disc(OD)boundary correspondingly.This research deploys the Ensemble Convolutional Neural Network(CNN)classification for classifying Glaucoma or Diabetes Retinopathy(DR).The detection of the boundary between the OC and the OD is performed by the SBEFCM,which is the latest weighted ellipse fitting model.The SBEFCM that enhances and widens the multi-ellipse fitting technique is proposed here.There is a preprocessing of input fundus image besides segmentation of blood vessels to avoid interlacing surrounding tissues and blood vessels.The ascertaining of OCandODboundary,which characterizedmany output factors for glaucoma detection,has been developed by EnsembleCNNclassification,which includes detecting sensitivity,specificity,precision,andArea Under the receiver operating characteristic Curve(AUC)values accurately by an innovative SBEFCM.In terms of contrast,the proposed Ensemble CNNsignificantly outperformed the current methods.
文摘Recently,an innovative trend like cloud computing has progressed quickly in InformationTechnology.For a background of distributed networks,the extensive sprawl of internet resources on the Web and the increasing number of service providers helped cloud computing technologies grow into a substantial scaled Information Technology service model.The cloud computing environment extracts the execution details of services and systems from end-users and developers.Additionally,through the system’s virtualization accomplished using resource pooling,cloud computing resources become more accessible.The attempt to design and develop a solution that assures reliable and protected authentication and authorization service in such cloud environments is described in this paper.With the help of multi-agents,we attempt to represent Open-Identity(ID)design to find a solution that would offer trustworthy and secured authentication and authorization services to software services based on the cloud.This research aims to determine how authentication and authorization services were provided in an agreeable and preventive manner.Based on attack-oriented threat model security,the evaluation works.By considering security for both authentication and authorization systems,possible security threats are analyzed by the proposed security systems.