In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and...In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.展开更多
According to the Rodrigues parameter and the internal model principle,an adaptive state feedback control law is proposed for a rigid spacecraft with inertia uncertainty and exotic disturbances generated by an unknown ...According to the Rodrigues parameter and the internal model principle,an adaptive state feedback control law is proposed for a rigid spacecraft with inertia uncertainty and exotic disturbances generated by an unknown nonlinear exosystem.The uncertainty of parameters is treated by an adaptive control law.And a new internal model is proposed to estimate the exotic disturbances.By using the Lyapunov analysis method,the control law is designed to ensure that the system's state variables asymptotically converge to stable,and the disturbances can be completely rejected.Finally,numerical simulations are included to demonstrate the performance of the presented controller.展开更多
基金Supported by the National Natural Science Foundation of China(No.61663030,61663032)Natural Science Foundation of Jiangxi Province(No.20142BAB207021)+4 种基金the Foundation of Jiangxi Educational Committee(No.GJJ150753)the Innovation Fund Designated for Graduate Students of Nanchang Hangkong University(No.YC2017027)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province(Nanchang Hangkong University)(No.TX201404003)Key Laboratory of Nondestructive Testing(Nanchang Hangkong University),Ministry of Education(No.ZD29529005)the Reform Project of Degree and Postgraduate Education in Jiangxi(No.JXYJG-2017-131)
文摘In order to suppress the influence of uncertain factors on robot system and enable an uncertain robot system to track the reference input accurately,a strategy of combining composite nonlinear feedback(CNF)control and adaptive fuzzy control is studied,and a robot CNF controller based on adaptive fuzzy compensation is proposed.The key of this strategy is to use adaptive fuzzy control to approach the uncertainty of the system online,as the compensation term of the CNF controller,and make full use of the advantages of the two control methods to reduce the influence of uncertain factors on the performance of the system.The convergence of the closed-loop system is proved by feedback linearization and Lyapunov theory.The final simulation results confirm the effectiveness of this plan.
基金National Natural Science Foundation of China(No.61663030,No.61663032)Natural Science Foundation of Jiangxi Province,China(No.20142BAB207021)+4 种基金the Innovation Fund Designated for Graduate Students of Jiangxi Province(YC2016-S350)the Foundation of Jiangxi Educational Committee,China(No.GJJ150753)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province,China(Nanchang Hangkong University)(No.TX201404003)Key Laboratory of Nondestructive Testing(Nanchang Hangkong University),Ministry of Education,China(No.ZD29529005)The Twelfth "Sanxiao" College Students Extracurricular Innovation and Entrepreneurship Practice and Training Project of Nanchang Hangkong University,China(No.2017ZD021)
文摘According to the Rodrigues parameter and the internal model principle,an adaptive state feedback control law is proposed for a rigid spacecraft with inertia uncertainty and exotic disturbances generated by an unknown nonlinear exosystem.The uncertainty of parameters is treated by an adaptive control law.And a new internal model is proposed to estimate the exotic disturbances.By using the Lyapunov analysis method,the control law is designed to ensure that the system's state variables asymptotically converge to stable,and the disturbances can be completely rejected.Finally,numerical simulations are included to demonstrate the performance of the presented controller.