Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth.Among the possible growth-regulating pathways in vertebrates,components of the ...Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth.Among the possible growth-regulating pathways in vertebrates,components of the somatotropic axis are thought to have the greatest influence.There is growing body of literature focusing on the somatotropic axis and its role regulating growth in fish.This includes research into growth hormone,upstream hypothalamic hormones,insulin-like growth factors,and downstream signaling molecules.Many of these signals have both somatic effects stimulating the growth of tissues and metabolic effects that play a role in nutrient metabolism.Signals of other endocrine axes exhibit profound effects on the function of the somatotropic axis in vivo.In this review we highlight recent advances in our understanding of the teleost fish endocrine somatotropic axis,including emerging research using genetic modified models.These studies have revealed new aspects and challenges associated with regulation of the important steps of somatic growth.展开更多
基金supported by the National Basic Research Program of China(2010CB126302 and 2014CB138602)to Yin Zhan
文摘Growth is a polygenic trait that is under the influence of multiple physiological pathways regulating energy metabolism and muscle growth.Among the possible growth-regulating pathways in vertebrates,components of the somatotropic axis are thought to have the greatest influence.There is growing body of literature focusing on the somatotropic axis and its role regulating growth in fish.This includes research into growth hormone,upstream hypothalamic hormones,insulin-like growth factors,and downstream signaling molecules.Many of these signals have both somatic effects stimulating the growth of tissues and metabolic effects that play a role in nutrient metabolism.Signals of other endocrine axes exhibit profound effects on the function of the somatotropic axis in vivo.In this review we highlight recent advances in our understanding of the teleost fish endocrine somatotropic axis,including emerging research using genetic modified models.These studies have revealed new aspects and challenges associated with regulation of the important steps of somatic growth.