Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses upli...Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways.展开更多
Erratum to:J.Mt.Sci.(2024)21(5):1663-1682 https://doi.org/10.1007/s11629-023-8561-0 During the production process,the first author’s name was wrongly written as“Rang Huang”in the metadata.The correct name for the f...Erratum to:J.Mt.Sci.(2024)21(5):1663-1682 https://doi.org/10.1007/s11629-023-8561-0 During the production process,the first author’s name was wrongly written as“Rang Huang”in the metadata.The correct name for the first author is“Kang Huang”.The first author’s name in the fulltext pdf is correct.展开更多
高铁路基膨胀灾害工程实例发现,部分膨胀是由叶绿泥石水化膨胀引起的,但目前国内外学者对叶绿泥石膨胀特性研究较少,相关机理尚未明确。采用多尺度表征的方法研究了宏观和纳观尺度下叶绿泥石的膨胀特性,运用分子动力学模拟方法研究了叶...高铁路基膨胀灾害工程实例发现,部分膨胀是由叶绿泥石水化膨胀引起的,但目前国内外学者对叶绿泥石膨胀特性研究较少,相关机理尚未明确。采用多尺度表征的方法研究了宏观和纳观尺度下叶绿泥石的膨胀特性,运用分子动力学模拟方法研究了叶绿泥石水化机理及动力学响应下的键能变化。结果表明:叶绿泥石具有一定的膨胀潜力。通过不同数量水分子的吸附试验,得到层间域极限数量为32个,吸附位置为硅氧骨干形成的六方空穴,且仅能形成1层饱和水分子层。随着水分子增多,膨胀加剧,直至达到极限,极限状态的晶格常数为a=21.52A,b=18.61A,c=14.54A。水化模型经室温恒压的动力学模拟,发现模拟过程中静电作用能贡献最多,van der Waals作用能次之,键伸缩能最少。随着水化的加剧,水分子之间的相互作用变弱,径向分布函数峰值右移,层间水分子扩散性增强,且表现出靠近滑石层的倾向,水氧与滑石层氢原子形成的氢键键长1.8A,层间水与黏土矿物的径向分布函数峰值右移,同时氢键中的氢原子与受体原子之间的距离增加,氢氧配位数增加,这导致氢键键长增加,键角减小,黏土层开始产生膨胀。展开更多
基金funded by the National Natural Science Foundation of China (No. 42172308, No.51779018)the Youth Innovation Promotion Association CAS (No. 2022331)the Science and Technology Research and Development Program of China State Railway Group Co., Ltd. (No. J2022G002)。
文摘Red-bed mudstone, prevalent in southwest China, poses a formidable challenge due to its hydrophilic clay minerals, resulting in expansion, deformation, and cracking upon exposure to moisture. This study addresses uplift deformation disasters in high-speed railways by employing a moisture diffusion-deformation-fracture coupling model based on the finite-discrete element method(FDEM). The model integrates the influence of cracks on moisture diffusion. The investigation into various excavation depths reveals a direct correlation between depth and the formation of tensile cracks at the bottom of the railway cutting. These cracks expedite moisture migration, significantly impacting the temporal and spatial evolution of the moisture field. Additionally, crack expansion dominates hygroscopic deformation, with the lateral coordinate of the crack zone determining peak vertical displacement. Furthermore, key factors influencing deformation in railway cuttings, including the swelling factor and initial moisture content at the bottom of the cutting, are explored. The number of tensile and shear cracks increases with greater excavation depth, particularly concerning shear cracks. Higher swelling factors and initial moisture contents result in an increased total number of cracks, predominantly shear cracks. Numerical calculations provide valuable insights, offering a scientific foundation and directional guidance for the precise prevention, control, prediction, and comprehensive treatment of mudstone-related issues in high-speed railways.
文摘Erratum to:J.Mt.Sci.(2024)21(5):1663-1682 https://doi.org/10.1007/s11629-023-8561-0 During the production process,the first author’s name was wrongly written as“Rang Huang”in the metadata.The correct name for the first author is“Kang Huang”.The first author’s name in the fulltext pdf is correct.
文摘高铁路基膨胀灾害工程实例发现,部分膨胀是由叶绿泥石水化膨胀引起的,但目前国内外学者对叶绿泥石膨胀特性研究较少,相关机理尚未明确。采用多尺度表征的方法研究了宏观和纳观尺度下叶绿泥石的膨胀特性,运用分子动力学模拟方法研究了叶绿泥石水化机理及动力学响应下的键能变化。结果表明:叶绿泥石具有一定的膨胀潜力。通过不同数量水分子的吸附试验,得到层间域极限数量为32个,吸附位置为硅氧骨干形成的六方空穴,且仅能形成1层饱和水分子层。随着水分子增多,膨胀加剧,直至达到极限,极限状态的晶格常数为a=21.52A,b=18.61A,c=14.54A。水化模型经室温恒压的动力学模拟,发现模拟过程中静电作用能贡献最多,van der Waals作用能次之,键伸缩能最少。随着水化的加剧,水分子之间的相互作用变弱,径向分布函数峰值右移,层间水分子扩散性增强,且表现出靠近滑石层的倾向,水氧与滑石层氢原子形成的氢键键长1.8A,层间水与黏土矿物的径向分布函数峰值右移,同时氢键中的氢原子与受体原子之间的距离增加,氢氧配位数增加,这导致氢键键长增加,键角减小,黏土层开始产生膨胀。