A medium-temperature waste-heat recovery system based on the organic Rankine cycle (ORC) is designed to recover the exhaust energy from a heavy-duty diesel engine. Analysis of the 1st law of thermodynamics for an ORC ...A medium-temperature waste-heat recovery system based on the organic Rankine cycle (ORC) is designed to recover the exhaust energy from a heavy-duty diesel engine. Analysis of the 1st law of thermodynamics for an ORC system is performed. This analysis contains two parts. The first part is an analysis with undefined heat exchangers to gain an understanding of the ORC and find out suitable organic fluid parameters for a better ORC efficiency. The second part of the analysis uses combined engine test results and two designs of heat exchangers. By comparing the two designs, an improved system of heat exchangers is described. This analysis also quantifies the effect of engine parameters on ORC system. The study concludes that the supercritical Rankine cycle is a better approach towards waste heat recovery. The ORC system is found to perform better under part-load conditions if the medium-high power condition rather than rated working point of the engine is used as the design parameter. The ORC system achieves the highest waste-heat recovery efficiency of up to 10-15% for the optimised heat ex-changer design.展开更多
Concentrating solar power technology is one of the most promising alternative energy technologies.In recent past,Linear Fresnel Reflector systems have received great attention and novel designs have been proposed keep...Concentrating solar power technology is one of the most promising alternative energy technologies.In recent past,Linear Fresnel Reflector systems have received great attention and novel designs have been proposed keeping in view the objective to enhance its functionality and performance.For achieving the same objective,this study presents a novel concept where a conventional LFR is enclosed in a greenhouse called greenhouse-LFR.It was expected that such an enclosure can:(1)increase the incoming solar radiation,(2)further improve the overall efficiency due to simplified cleaning process and(3)reduce the capital cost for the construction of LFR support system.A complete thermal and optical analysis was presented for modeling and performance evaluation of the solar field of both conventional-LFR and novel greenhouse-LFR.Sets of non-linear equations for each system were solved using Newton-Raphson method.More detailed optical analysis was further performed for conventional-LFR considering the seasonal variations.The results concluded that the greenhouse-LFR is better than the conventional-LFR as it had higher efficiency and useful heat with lesser heat losses.For greenhouse-LFR,the maximum thermal efficiency was 73.2%whereas for conventional-LFR it was 37.2%.Also,there was an average increase of useful heat by 3 times in the month of February and 4.7 times in the month of September.SolTrace^(TM) analysis indicated significant spillage loss when a conventional-LFR was used without a secondary reflector or slight curvature of the mirrors.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51076013)the Specialized Research Fund for the Doc-toral Program of Higher Education of China (Grant No. 20101101110008)
文摘A medium-temperature waste-heat recovery system based on the organic Rankine cycle (ORC) is designed to recover the exhaust energy from a heavy-duty diesel engine. Analysis of the 1st law of thermodynamics for an ORC system is performed. This analysis contains two parts. The first part is an analysis with undefined heat exchangers to gain an understanding of the ORC and find out suitable organic fluid parameters for a better ORC efficiency. The second part of the analysis uses combined engine test results and two designs of heat exchangers. By comparing the two designs, an improved system of heat exchangers is described. This analysis also quantifies the effect of engine parameters on ORC system. The study concludes that the supercritical Rankine cycle is a better approach towards waste heat recovery. The ORC system is found to perform better under part-load conditions if the medium-high power condition rather than rated working point of the engine is used as the design parameter. The ORC system achieves the highest waste-heat recovery efficiency of up to 10-15% for the optimised heat ex-changer design.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,“Ministry of Education”in Saudi Arabia for funding this research work through the project number IFKSURG-2020-200.
文摘Concentrating solar power technology is one of the most promising alternative energy technologies.In recent past,Linear Fresnel Reflector systems have received great attention and novel designs have been proposed keeping in view the objective to enhance its functionality and performance.For achieving the same objective,this study presents a novel concept where a conventional LFR is enclosed in a greenhouse called greenhouse-LFR.It was expected that such an enclosure can:(1)increase the incoming solar radiation,(2)further improve the overall efficiency due to simplified cleaning process and(3)reduce the capital cost for the construction of LFR support system.A complete thermal and optical analysis was presented for modeling and performance evaluation of the solar field of both conventional-LFR and novel greenhouse-LFR.Sets of non-linear equations for each system were solved using Newton-Raphson method.More detailed optical analysis was further performed for conventional-LFR considering the seasonal variations.The results concluded that the greenhouse-LFR is better than the conventional-LFR as it had higher efficiency and useful heat with lesser heat losses.For greenhouse-LFR,the maximum thermal efficiency was 73.2%whereas for conventional-LFR it was 37.2%.Also,there was an average increase of useful heat by 3 times in the month of February and 4.7 times in the month of September.SolTrace^(TM) analysis indicated significant spillage loss when a conventional-LFR was used without a secondary reflector or slight curvature of the mirrors.