Redox state mediates embryonic stem cell(ESC)differentiation and thus offers an important complementary approach to understanding the pluripotency of stem cells.NADH redox ratio(NADH/(Fp t NADH)),where NADH is the red...Redox state mediates embryonic stem cell(ESC)differentiation and thus offers an important complementary approach to understanding the pluripotency of stem cells.NADH redox ratio(NADH/(Fp t NADH)),where NADH is the reduced form of nicotinamide adenine dinucleotide and Fp is the oxidizedflavoproteins,has been established as a sensitive indicator of mitochondrial redox state.In this paper,we report our redox imaging data on the mitochondrial redox state of mouse ESC(mESC)colonies and the implications thereof.The low-temperature NADH/Fp redox scanner was employed to image mESC colonies grown on a feeder layer of gamma-irradiated mouse embryonicfibroblasts(MEFs)on glass cover slips.The result showed significant heterogeneity in the mitochondrial redox state within individual mESC colonies(size:~200-440μm),exhibiting a core with a more reduced state than the periphery.This more reduced state positively correlates with the expression pattern of Oct4,a well-established marker of pluripotency.Our observation is thefirst to show the heterogeneity in the mitochondrial redox state within a mESC colony,suggesting that mitochondrial redox state should be further investigated as a potential new biomarker for the stemness of embryonic stem cells.展开更多
基金provided by the Institute for Regenerative Medicine at University of Pennsylvania with an IRM pilot grant(L.Z.Li).
文摘Redox state mediates embryonic stem cell(ESC)differentiation and thus offers an important complementary approach to understanding the pluripotency of stem cells.NADH redox ratio(NADH/(Fp t NADH)),where NADH is the reduced form of nicotinamide adenine dinucleotide and Fp is the oxidizedflavoproteins,has been established as a sensitive indicator of mitochondrial redox state.In this paper,we report our redox imaging data on the mitochondrial redox state of mouse ESC(mESC)colonies and the implications thereof.The low-temperature NADH/Fp redox scanner was employed to image mESC colonies grown on a feeder layer of gamma-irradiated mouse embryonicfibroblasts(MEFs)on glass cover slips.The result showed significant heterogeneity in the mitochondrial redox state within individual mESC colonies(size:~200-440μm),exhibiting a core with a more reduced state than the periphery.This more reduced state positively correlates with the expression pattern of Oct4,a well-established marker of pluripotency.Our observation is thefirst to show the heterogeneity in the mitochondrial redox state within a mESC colony,suggesting that mitochondrial redox state should be further investigated as a potential new biomarker for the stemness of embryonic stem cells.