Infrared imaging is a crucial technique in a multitude of applications,including night vision,autonomous vehicle navigation,optical tomography,and food quality control.Conventional infrared imaging technologies,howeve...Infrared imaging is a crucial technique in a multitude of applications,including night vision,autonomous vehicle navigation,optical tomography,and food quality control.Conventional infrared imaging technologies,however,require the use of materials such as narrow bandgap semiconductors,which are sensitive to thermal noise and often require cryogenic cooling.We demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas,using a nonlinear wave-mixing process.We experimentally show the upconversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation.In this process,an infrared image of a target is mixed inside the metasurface with a strong pump beam,translating the image from the infrared to the visible in a nanoscale ultrathin imaging device.Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences.展开更多
Dielectric nanocavities are emerging as a versatile and powerful tool for the linear and nonlinear manipulation of light at the nanoscale. In this work, we exploit the effective coupling of electric and toroidal modes...Dielectric nanocavities are emerging as a versatile and powerful tool for the linear and nonlinear manipulation of light at the nanoscale. In this work, we exploit the effective coupling of electric and toroidal modes in AIGaAs nanodimers to locally enhance both electric and magnetic fields while minimizing the optical scattering, thereby optimizing their second-harmonic generation efficiency with respect to the case of a single isolated nanodisk. We also demonstrate that proper near-field coupling can provide fitrther degrees of freedom to control the polari- zation state and the radiation diagram of the second-harmonic field.展开更多
基金The authors acknowledge the use of the Australian National Fabrication Facility(ANFF),ACT Node.Rocio CamachoMorales acknowledges a grant from the Consejo Nacional de Ciencia y Tecnología(CONACYT),MexicoNikolay Dimitrov and Lyubomir Stoyanov acknowledge a grant from the EU Marie-Curie RISE program NOCTURNO+1 种基金Mohsen Rahmani acknowledges support from the UK Research and Innovation Future Leaders Fellowship(MR/T040513/1)Dragomir N.Neshev acknowledges a grant from the Australian Research Council(CE20010001,DP190101559).
文摘Infrared imaging is a crucial technique in a multitude of applications,including night vision,autonomous vehicle navigation,optical tomography,and food quality control.Conventional infrared imaging technologies,however,require the use of materials such as narrow bandgap semiconductors,which are sensitive to thermal noise and often require cryogenic cooling.We demonstrate a compact all-optical alternative to perform infrared imaging in a metasurface composed of GaAs semiconductor nanoantennas,using a nonlinear wave-mixing process.We experimentally show the upconversion of short-wave infrared wavelengths via the coherent parametric process of sum-frequency generation.In this process,an infrared image of a target is mixed inside the metasurface with a strong pump beam,translating the image from the infrared to the visible in a nanoscale ultrathin imaging device.Our results open up new opportunities for the development of compact infrared imaging devices with applications in infrared vision and life sciences.
基金Australian Research Council(ARC)Education,Audiovisual and Culture Executive Agency(EACEA)(5659/002-001)SATT IdF-Innov UniversitéSorbonne(Double Culture-PhD program)
文摘Dielectric nanocavities are emerging as a versatile and powerful tool for the linear and nonlinear manipulation of light at the nanoscale. In this work, we exploit the effective coupling of electric and toroidal modes in AIGaAs nanodimers to locally enhance both electric and magnetic fields while minimizing the optical scattering, thereby optimizing their second-harmonic generation efficiency with respect to the case of a single isolated nanodisk. We also demonstrate that proper near-field coupling can provide fitrther degrees of freedom to control the polari- zation state and the radiation diagram of the second-harmonic field.