Optical singularity is pivotal in nature and has attracted wide interest from many disciplines nowadays,including optical communication,quantum optics,and biomedical imaging.Visualizing vortex lines formed by phase si...Optical singularity is pivotal in nature and has attracted wide interest from many disciplines nowadays,including optical communication,quantum optics,and biomedical imaging.Visualizing vortex lines formed by phase singularities and fabricating chiral nanostructures using the evolution of vortex lines are of great significance.In this paper,we introduce a promising method based on two-photon polymerization direct laser writing(2PP-DLW)to record the morphology of vortex lines generated by tightly focused multi-vortex beams(MVBs)at the nanoscale.Due to Gouy phase,the singularities of the MVBs rotate around the optical axis and move towards each other when approaching the focal plane.The propagation dynamics of vortex lines are recorded by 2PP-DLW,which explicitly exhibits the evolution of the phase singularities.Additionally,the MVBs are employed to fabricate stable three-dimensional chiral nanostructures due to the spiral-forward property of the vortex line.Because of the obvious chiral features of the manufactured nanostructures,a strong vortical dichroism is observed when excited by the light carrying orbital angular momentum.A number of applications can be envisioned with these chiral nanostructures,such as optical sensing,chiral separation,and information storage.展开更多
We propose a new method for the development of multi-beam systems for the spatial alignment and stability of beams based on the error separation technique.This method avoids alignment errors caused by coupling effect ...We propose a new method for the development of multi-beam systems for the spatial alignment and stability of beams based on the error separation technique.This method avoids alignment errors caused by coupling effect of piezoelectric devices,inaccurate correction calculations,and detection mode of the angular deviation.According to the results by external detectors,the error value of spatial alignment and the root mean square[RMS]of deviations under control during 1 h can be equivalent to approximately 0.87 and 1.06 nm at the sample plane under an oil immersion lens[focal length f=2 mm].The RMS of deviations is less than one-third of those currently reported for multi-beam systems;therefore,higher alignment and stability accuracy can be achieved with our proposed method.展开更多
In section 3.2,a reference(Ref.33)was missing in the first sentence.It was already listed in the References list and correctly cited in another portion of the text.Section 3.2,the second sentence incorrectly referred ...In section 3.2,a reference(Ref.33)was missing in the first sentence.It was already listed in the References list and correctly cited in another portion of the text.Section 3.2,the second sentence incorrectly referred to the"pattern in Fig.2";the pattern was specific to Fig.S6 in the Supplemental Material.展开更多
Direct laser writing(DLW)enables arbitrary three-dimensional nanofabrication.However,the diffraction limit poses a major obstacle for realizing nanometer-scale features.Furthermore,it is challenging to improve the fab...Direct laser writing(DLW)enables arbitrary three-dimensional nanofabrication.However,the diffraction limit poses a major obstacle for realizing nanometer-scale features.Furthermore,it is challenging to improve the fabrication efficiency using the currently prevalent single-focal-spot systems,which cannot perform high-throughput lithography.To overcome these challenges,a parallel peripheral-photoinhibition lithography system with a sub-40-nm two-dimensional feature size and a sub-20-nm suspended line width was developed in our study,based on two-photon polymerization DLW.The lithography efficiency of the developed system is twice that of conventional systems for both uniform and complex structures.The proposed system facilitates the realization of portable DLW with a higher resolution and throughput.展开更多
基金National Key Research and Development Program of China(2021YFF0502700)China Postdoctoral Science Foundation(2022M722905)+2 种基金Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Major Program of Natural Science Foundation of Zhejiang Province(LD21F050002)"Pioneer"and"Leading Goose"Research and Development Program of Zhejiang Province(2023C01051,2023C01186)。
文摘Optical singularity is pivotal in nature and has attracted wide interest from many disciplines nowadays,including optical communication,quantum optics,and biomedical imaging.Visualizing vortex lines formed by phase singularities and fabricating chiral nanostructures using the evolution of vortex lines are of great significance.In this paper,we introduce a promising method based on two-photon polymerization direct laser writing(2PP-DLW)to record the morphology of vortex lines generated by tightly focused multi-vortex beams(MVBs)at the nanoscale.Due to Gouy phase,the singularities of the MVBs rotate around the optical axis and move towards each other when approaching the focal plane.The propagation dynamics of vortex lines are recorded by 2PP-DLW,which explicitly exhibits the evolution of the phase singularities.Additionally,the MVBs are employed to fabricate stable three-dimensional chiral nanostructures due to the spiral-forward property of the vortex line.Because of the obvious chiral features of the manufactured nanostructures,a strong vortical dichroism is observed when excited by the light carrying orbital angular momentum.A number of applications can be envisioned with these chiral nanostructures,such as optical sensing,chiral separation,and information storage.
基金supported by the National Key R&D Program of China(No.2021YFF0502700)National Natural Science Foundation of China(Nos.52105565 and 62105298)+3 种基金Natural Science Foundation of Zhejiang Province(Nos.LQ22F050015 and LQ22F050017)Major Program of Natural Science Foundation of Zhejiang Province(No.LD21F050002)Postdoctoral Research Foundation of China(No.2020M671822)Major Scientific Project of Zhejiang Lab(No.2020MC0AE01)。
文摘We propose a new method for the development of multi-beam systems for the spatial alignment and stability of beams based on the error separation technique.This method avoids alignment errors caused by coupling effect of piezoelectric devices,inaccurate correction calculations,and detection mode of the angular deviation.According to the results by external detectors,the error value of spatial alignment and the root mean square[RMS]of deviations under control during 1 h can be equivalent to approximately 0.87 and 1.06 nm at the sample plane under an oil immersion lens[focal length f=2 mm].The RMS of deviations is less than one-third of those currently reported for multi-beam systems;therefore,higher alignment and stability accuracy can be achieved with our proposed method.
文摘In section 3.2,a reference(Ref.33)was missing in the first sentence.It was already listed in the References list and correctly cited in another portion of the text.Section 3.2,the second sentence incorrectly referred to the"pattern in Fig.2";the pattern was specific to Fig.S6 in the Supplemental Material.
基金the National Key Research and Development Program of China(Grant No.2021YFF0502700)the National Natural Science Foundation of China(Grant Nos.62105298,52105565,and 22105180)+2 种基金China Postdoctoral Science Foundation(Grant Nos.2020M671823 and 2020M681956)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LD21F050002,LQ22F050017,and LQ22F050015)the Major Scientific Project of Zhejiang Lab,China(Grant No.2020MC0AE01).
文摘Direct laser writing(DLW)enables arbitrary three-dimensional nanofabrication.However,the diffraction limit poses a major obstacle for realizing nanometer-scale features.Furthermore,it is challenging to improve the fabrication efficiency using the currently prevalent single-focal-spot systems,which cannot perform high-throughput lithography.To overcome these challenges,a parallel peripheral-photoinhibition lithography system with a sub-40-nm two-dimensional feature size and a sub-20-nm suspended line width was developed in our study,based on two-photon polymerization DLW.The lithography efficiency of the developed system is twice that of conventional systems for both uniform and complex structures.The proposed system facilitates the realization of portable DLW with a higher resolution and throughput.