A TiO2@SiO2 hybrid support was prepared by the sol-precipitation method using n-octylamine as a template.The photocatalyst manganese phthalocyanine tetrasulfonic acid (MnPcS) was immobilized on the support to form MnP...A TiO2@SiO2 hybrid support was prepared by the sol-precipitation method using n-octylamine as a template.The photocatalyst manganese phthalocyanine tetrasulfonic acid (MnPcS) was immobilized on the support to form MnPcS-TiO2@SiO2.X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were employed to characterize the catalyst.The photocatalytic degradation of rhodamine B (RhB) and the catalytic oxidation of o-phenylenediamine (OPDA) under visible light irradiation were used as probe reactions.The mineralization efficiency and the degradation mechanism were evaluated using chemical oxygen demand (COD Cr) assays and electron spin resonance (ESR),respectively.RhB was efficiently degraded by immobilized MnPcS-TiO2@SiO2 under visible light irradiation.Complete decolorization of RhB occurred after 240 min of irradiation and 64.02% COD Cr removal occurred after 24 h of irradiation.ESR results indicated that the oxidation process was dominated by the hydroxyl radical (·OH) and superoxide radical (O-·2) generated in the system.展开更多
基金supported by the National Natural Science Foundation of China(20877048)the National Basic Research Program of China(2008CB417206)the Innovation Group Project of Hubei Provincial Natural Science Foundation(2009CDA020)
文摘A TiO2@SiO2 hybrid support was prepared by the sol-precipitation method using n-octylamine as a template.The photocatalyst manganese phthalocyanine tetrasulfonic acid (MnPcS) was immobilized on the support to form MnPcS-TiO2@SiO2.X-ray diffraction (XRD) and UV-Visible diffuse reflectance spectra (UV-Vis DRS) were employed to characterize the catalyst.The photocatalytic degradation of rhodamine B (RhB) and the catalytic oxidation of o-phenylenediamine (OPDA) under visible light irradiation were used as probe reactions.The mineralization efficiency and the degradation mechanism were evaluated using chemical oxygen demand (COD Cr) assays and electron spin resonance (ESR),respectively.RhB was efficiently degraded by immobilized MnPcS-TiO2@SiO2 under visible light irradiation.Complete decolorization of RhB occurred after 240 min of irradiation and 64.02% COD Cr removal occurred after 24 h of irradiation.ESR results indicated that the oxidation process was dominated by the hydroxyl radical (·OH) and superoxide radical (O-·2) generated in the system.