三北防护林体系建设工程区(以下简称"三北工程区")早期的植被建设忽略了水资源承载力,对三北防护林的可持续维护产生了不利影响。为落实"以水定林草"的发展理念,在三个空间尺度上,基于1951—2018年降水量,采用Mann-...三北防护林体系建设工程区(以下简称"三北工程区")早期的植被建设忽略了水资源承载力,对三北防护林的可持续维护产生了不利影响。为落实"以水定林草"的发展理念,在三个空间尺度上,基于1951—2018年降水量,采用Mann-Kendall非参数检验方法、自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)和地理信息系统空间分析等方法,开展全年、生长季和非生长季降水量多尺度变化趋势与未来30年预测研究,结果表明:"三北工程区"全年和生长季降水量呈增长趋势的面积百分比分别为73.64%和70.10%,主要分布在西北荒漠区;非生长季降水量呈增长趋势的面积比例达92.06%,除黄土高原南部和风沙区的少部分地区而外,均呈增长趋势。全年、生长季和非生长季降水量呈增长趋势且置信度为90%以上的面积百分比分别为45.43%、37.31%和36.79%。18个重点建设区的雷达统计图显示:生长季与全年降水量的变化趋势一致,由东向西,松辽平原等7个区域以不显著减少趋势为主,松嫩平原等7个区域以不显著增长趋势为主,西部的柴达木盆地等4个区域以显著性达到90%或95%的增长趋势为主;非生长季除晋陕峡谷、泾河渭河流域以非显著减少趋势为主而外,其他地区均以增长趋势为主。5个"重点县"的降水统计量UFk与其反序统计量UBk两条曲线出现交点,表明年降水量有突变发生,库尔勒市、磴口县、科尔沁左翼后旗UFk与UBk曲线多处出现交点,表明年降水量突变发生频繁。采用ARIMA预测得出未来30年的年降水量,计算得到未来30年间的年降水量变化数据,并绘制其空间分布图。本研究可为三北工程区开展基于水资源承载能力的林草资源优化配置提供基础数据,为发展"雨养林草植被"提供科学支撑。展开更多
Zhangjiakou region is situated in an agro-pastoral ecotone with a fragile ecosystem. While it has limited surface water resources available and serious groundwater over-exploitation, the city is located in the water c...Zhangjiakou region is situated in an agro-pastoral ecotone with a fragile ecosystem. While it has limited surface water resources available and serious groundwater over-exploitation, the city is located in the water conservation zone for the Beijing-Tianjin-Hebei coordinated development area, so its water security is crucial for the entire Beijing-Tianjin-Hebei region. Therefore, it is of vital significance to determine the zoning management of water resources and decision-making according to the magnitude of water resource security risks. This study built an indicator system for water security risk assessment in line with the principles of scientific validity, comparability, operability, and data availability, and this system gives weights to these indicators using the AHP approach. County-level multi-source data for the study area, based on water resource zones, were collected by using mathematical statistics and 3 S technology. With normalized data and a weighting method the water security risks were calculated. The results showed large spatial variations of water security risks in Zhangjiakou on the scales of geomorphic and administrative units as well as river basins. High-risk areas are extensive in the Bashang Plateau, and extremely high risk values are found in the Baxia areas. On the watershed scale, high-risk areas are mainly distributed in the inland river basins and the Yongding River basin. The risk values of the Luanhe River, Chaobai River and Daqing River basins in the Zhangjiakou region tend to decrease from north to south. For the northern and western areas of the Bashang Plateau, the factor of "vulnerability of the disaster-prone environment" contributes the most to the water security risk level. Agricultural water use constrains industrial and ecological water use, but in the context of inadequate water resource endowments, the urban population concentration and industrial development are the main causes of water shortages and water pollution so they contribute more to water security risks. This study of the spatial variation of water security risks in Zhangjiakou can provide an important scientific reference for zone-based management and decision-making for reducing the water security risks in the farming-pastoral ecotone.展开更多
1 Introduction National Key Ecological Function Areas(NKEFA),which refer to regions undertaking water conservation,soil and water conservation,windbreak and sand-fixation,and biodiversity maintenance,are associated wi...1 Introduction National Key Ecological Function Areas(NKEFA),which refer to regions undertaking water conservation,soil and water conservation,windbreak and sand-fixation,and biodiversity maintenance,are associated with national or regional ecological security and need to restrict extensive industrialization or urbanization.In 2010,the China’s State Council issued the National Major Function Zone Planning,which drew out 25NKEFA in restricted development zone according to two aspects including the ecological vulnerability and the ecological importance.展开更多
文摘三北防护林体系建设工程区(以下简称"三北工程区")早期的植被建设忽略了水资源承载力,对三北防护林的可持续维护产生了不利影响。为落实"以水定林草"的发展理念,在三个空间尺度上,基于1951—2018年降水量,采用Mann-Kendall非参数检验方法、自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)和地理信息系统空间分析等方法,开展全年、生长季和非生长季降水量多尺度变化趋势与未来30年预测研究,结果表明:"三北工程区"全年和生长季降水量呈增长趋势的面积百分比分别为73.64%和70.10%,主要分布在西北荒漠区;非生长季降水量呈增长趋势的面积比例达92.06%,除黄土高原南部和风沙区的少部分地区而外,均呈增长趋势。全年、生长季和非生长季降水量呈增长趋势且置信度为90%以上的面积百分比分别为45.43%、37.31%和36.79%。18个重点建设区的雷达统计图显示:生长季与全年降水量的变化趋势一致,由东向西,松辽平原等7个区域以不显著减少趋势为主,松嫩平原等7个区域以不显著增长趋势为主,西部的柴达木盆地等4个区域以显著性达到90%或95%的增长趋势为主;非生长季除晋陕峡谷、泾河渭河流域以非显著减少趋势为主而外,其他地区均以增长趋势为主。5个"重点县"的降水统计量UFk与其反序统计量UBk两条曲线出现交点,表明年降水量有突变发生,库尔勒市、磴口县、科尔沁左翼后旗UFk与UBk曲线多处出现交点,表明年降水量突变发生频繁。采用ARIMA预测得出未来30年的年降水量,计算得到未来30年间的年降水量变化数据,并绘制其空间分布图。本研究可为三北工程区开展基于水资源承载能力的林草资源优化配置提供基础数据,为发展"雨养林草植被"提供科学支撑。
基金The National Major Science and Technology Program for Water Pollution Control and Treatment (2017ZX07101001)Guizhou Normal University Doctoral Funds (GZNUD20178, GZNUD20179)Science and Technology Program of Guizhou Province (20191218, 20191222, 20201Z031)。
文摘Zhangjiakou region is situated in an agro-pastoral ecotone with a fragile ecosystem. While it has limited surface water resources available and serious groundwater over-exploitation, the city is located in the water conservation zone for the Beijing-Tianjin-Hebei coordinated development area, so its water security is crucial for the entire Beijing-Tianjin-Hebei region. Therefore, it is of vital significance to determine the zoning management of water resources and decision-making according to the magnitude of water resource security risks. This study built an indicator system for water security risk assessment in line with the principles of scientific validity, comparability, operability, and data availability, and this system gives weights to these indicators using the AHP approach. County-level multi-source data for the study area, based on water resource zones, were collected by using mathematical statistics and 3 S technology. With normalized data and a weighting method the water security risks were calculated. The results showed large spatial variations of water security risks in Zhangjiakou on the scales of geomorphic and administrative units as well as river basins. High-risk areas are extensive in the Bashang Plateau, and extremely high risk values are found in the Baxia areas. On the watershed scale, high-risk areas are mainly distributed in the inland river basins and the Yongding River basin. The risk values of the Luanhe River, Chaobai River and Daqing River basins in the Zhangjiakou region tend to decrease from north to south. For the northern and western areas of the Bashang Plateau, the factor of "vulnerability of the disaster-prone environment" contributes the most to the water security risk level. Agricultural water use constrains industrial and ecological water use, but in the context of inadequate water resource endowments, the urban population concentration and industrial development are the main causes of water shortages and water pollution so they contribute more to water security risks. This study of the spatial variation of water security risks in Zhangjiakou can provide an important scientific reference for zone-based management and decision-making for reducing the water security risks in the farming-pastoral ecotone.
基金the National Science and Technology Support Program(2013BAC03B05)National Natural Science Foundation of China(41371486)+1 种基金open project of the Ecological Security and Protection Key Laboratory of Sichuan Province(ESP201304QD2014A001)
文摘1 Introduction National Key Ecological Function Areas(NKEFA),which refer to regions undertaking water conservation,soil and water conservation,windbreak and sand-fixation,and biodiversity maintenance,are associated with national or regional ecological security and need to restrict extensive industrialization or urbanization.In 2010,the China’s State Council issued the National Major Function Zone Planning,which drew out 25NKEFA in restricted development zone according to two aspects including the ecological vulnerability and the ecological importance.