The isothermal phase diagram of the Cu2O-Al2O3-SiO2 ternary system at 1150℃ was reported for the samples which were prepared from sol-gel method and quenched by water after being heated at 1150℃ for 12 h. Based on t...The isothermal phase diagram of the Cu2O-Al2O3-SiO2 ternary system at 1150℃ was reported for the samples which were prepared from sol-gel method and quenched by water after being heated at 1150℃ for 12 h. Based on the conventional X-ray powder diffraction (XRD) and in situ high-temperature XRD quantitative analysis,in addition to scanning electron microscopy measurement,the phase identification was achieved. Combining the deduction from the component phase diagrams of the binary systems using the phase equilibrium theorem,the primary isothermal phase diagram was plotted over the composition area Cu2O-mullite-SiO2. In this area,the approximate composition areas of two two-phase regions and one three-phase region,(L2+Cr),(L2+M),and (L1+L2+Tr),were determined. Moreover,the precise composition areas of both of the three-phase regions (L2+Cr+M) and (L2+M+A) were determined according to the results of conventional and in situ high-temperature XRD quantitative analysis by Rietveld method.展开更多
为了开发番茄抗黄萎病、枯萎病、根结线虫和细菌性斑点病基因的高通量分子标记,以189份加工番茄核心种质为试材进行低倍重测序(0.5×),群体结构和主成分分析结果均将材料分为2个大的亚群。利用混合线性模型(Mixed linear model,MLM...为了开发番茄抗黄萎病、枯萎病、根结线虫和细菌性斑点病基因的高通量分子标记,以189份加工番茄核心种质为试材进行低倍重测序(0.5×),群体结构和主成分分析结果均将材料分为2个大的亚群。利用混合线性模型(Mixed linear model,MLM)对抗病基因Ve-1、I-2、Mi-1和Pto的分子标记检测结果进行全基因组关联分析(Genome-wide association study,GWAS),获得了与抗病基因紧密连锁的变异位点,并获得了Ve-1、I-2、Mi-1和Pto基因内部的单核苷酸多态性位点(Single nucleotide polymorphisms,SNPs),提高了基因检测的准确性。其中与Ve-1关联度最高的位点位于基因内部,与I-2、Mi-1与Pto关联度最高的位点位于基因侧翼,可能与不同材料内等位基因变异及变异频率有关。利用该群体还可以进行加工番茄其他性状的挖掘;通过明确等位基因的变异与材料抗病基因的关系获得的关联位点可以用于通量SNP标记的开发,进行分子辅助番茄育种,提高番茄育种效率。展开更多
基金the National Natural Science Foundation of China (No. 20471010)the Scien-tific Research Fund of Hunan Provincial Education Department (No. 05c173).
文摘The isothermal phase diagram of the Cu2O-Al2O3-SiO2 ternary system at 1150℃ was reported for the samples which were prepared from sol-gel method and quenched by water after being heated at 1150℃ for 12 h. Based on the conventional X-ray powder diffraction (XRD) and in situ high-temperature XRD quantitative analysis,in addition to scanning electron microscopy measurement,the phase identification was achieved. Combining the deduction from the component phase diagrams of the binary systems using the phase equilibrium theorem,the primary isothermal phase diagram was plotted over the composition area Cu2O-mullite-SiO2. In this area,the approximate composition areas of two two-phase regions and one three-phase region,(L2+Cr),(L2+M),and (L1+L2+Tr),were determined. Moreover,the precise composition areas of both of the three-phase regions (L2+Cr+M) and (L2+M+A) were determined according to the results of conventional and in situ high-temperature XRD quantitative analysis by Rietveld method.
文摘为了开发番茄抗黄萎病、枯萎病、根结线虫和细菌性斑点病基因的高通量分子标记,以189份加工番茄核心种质为试材进行低倍重测序(0.5×),群体结构和主成分分析结果均将材料分为2个大的亚群。利用混合线性模型(Mixed linear model,MLM)对抗病基因Ve-1、I-2、Mi-1和Pto的分子标记检测结果进行全基因组关联分析(Genome-wide association study,GWAS),获得了与抗病基因紧密连锁的变异位点,并获得了Ve-1、I-2、Mi-1和Pto基因内部的单核苷酸多态性位点(Single nucleotide polymorphisms,SNPs),提高了基因检测的准确性。其中与Ve-1关联度最高的位点位于基因内部,与I-2、Mi-1与Pto关联度最高的位点位于基因侧翼,可能与不同材料内等位基因变异及变异频率有关。利用该群体还可以进行加工番茄其他性状的挖掘;通过明确等位基因的变异与材料抗病基因的关系获得的关联位点可以用于通量SNP标记的开发,进行分子辅助番茄育种,提高番茄育种效率。