In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient....In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient. And effects of inlet velocity, excess air coefficient and heat transfer coefficient on the catalytic combustion efficiency of the hydrogen have been analyzed by the FLUENT with CHEMKIN reaction mechanisms and the fuzzy grey relation theory. It is showed that inlet velocity has a more intuitive influence on the catalytic combustion efficiency of the hydrogen. A higher efficiency can be obtained with a lower inlet velocity. The optimum excess air coefficient is in the range of 0.94 to 1.0, the catalytic combustion efficiency of the hydrogen will be declined if the excess air coefficient exceeded 1.0. The effect of heat transfer coefficient on the catalytic combustion efficiency of the hydrogen mainly embodies in the case of the excess air coefficient exceeded 1.0, however, the effect will be declined if the heat transfer coefficient exceeded 4.0. The fuzzy grey relation degrees of the inlet velocity, heat transfer coefficient and excess air coefficient on the catalytic combustion efficiency of the hydrogen are 0.640945, 0.633214 and 0.547892 respectively.展开更多
基金Project(51776062) supported by the National Natural Science Foundation of ChinaProject(201208430262) supported by the National Studying Abroad Foundation Project of the China Scholarship Council
文摘In order to enhance catalytic combustion efficiency, a premixed hydrogen /air combustion model of the micro turbine engine is established under different excess air ratio, inlet velocity and heat transfer coefficient. And effects of inlet velocity, excess air coefficient and heat transfer coefficient on the catalytic combustion efficiency of the hydrogen have been analyzed by the FLUENT with CHEMKIN reaction mechanisms and the fuzzy grey relation theory. It is showed that inlet velocity has a more intuitive influence on the catalytic combustion efficiency of the hydrogen. A higher efficiency can be obtained with a lower inlet velocity. The optimum excess air coefficient is in the range of 0.94 to 1.0, the catalytic combustion efficiency of the hydrogen will be declined if the excess air coefficient exceeded 1.0. The effect of heat transfer coefficient on the catalytic combustion efficiency of the hydrogen mainly embodies in the case of the excess air coefficient exceeded 1.0, however, the effect will be declined if the heat transfer coefficient exceeded 4.0. The fuzzy grey relation degrees of the inlet velocity, heat transfer coefficient and excess air coefficient on the catalytic combustion efficiency of the hydrogen are 0.640945, 0.633214 and 0.547892 respectively.