文本情感分类的核心问题是如何有效地表示文本的情感语义,然而,目前的大多数方法只考虑到了文本内容中的情感语义,忽略了与文本内容相关的用户信息以及文本内容所描述的产品信息。已有的包含用户和产品信息方法也存在着以下两个问题:(1...文本情感分类的核心问题是如何有效地表示文本的情感语义,然而,目前的大多数方法只考虑到了文本内容中的情感语义,忽略了与文本内容相关的用户信息以及文本内容所描述的产品信息。已有的包含用户和产品信息方法也存在着以下两个问题:(1)不能有效地表示用户和产品信息,而且模型复杂度过高导致训练速度满。(2)文本情感语义表示模型过于简单,不能有效地表示文本中的上下文语义信息。针对以上两个问题,提出了相应的解决方案:(1)针对用户和产品的评价数据,利用奇异值分解(Singular Value Decomposition,SVD)的方法得到用户和产品的语义准确的先验信息,同时避免了用户和产品信息等相关参数的训练,缓解了模型复杂度高的问题。(2)利用双向的门循环单元(GRU)模型代替原有的简单模型,更加有效地结合了文本中的上下文语义信息。实验结果表明:相比传统的文本分类方法,提出的方法有更好的分类效果,在部分实验数据中达到了最好的分类准确度。同时模型的训练速度也得到了提升。展开更多
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ...Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.展开更多
This paper studies evolutionary mechanism of parameter selection in the construction of weight function for Nearest Neighbour Estimate in nonparametric regression. Construct an algorithm which adaptively evolves fine ...This paper studies evolutionary mechanism of parameter selection in the construction of weight function for Nearest Neighbour Estimate in nonparametric regression. Construct an algorithm which adaptively evolves fine weight and makes good prediction about unknown points. The numerical experiments indicate that this method is effective. It is a meaningful discussion about practicability of nonparametric regression and methodology of adaptive model-building.展开更多
Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstructio...Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.展开更多
文摘文本情感分类的核心问题是如何有效地表示文本的情感语义,然而,目前的大多数方法只考虑到了文本内容中的情感语义,忽略了与文本内容相关的用户信息以及文本内容所描述的产品信息。已有的包含用户和产品信息方法也存在着以下两个问题:(1)不能有效地表示用户和产品信息,而且模型复杂度过高导致训练速度满。(2)文本情感语义表示模型过于简单,不能有效地表示文本中的上下文语义信息。针对以上两个问题,提出了相应的解决方案:(1)针对用户和产品的评价数据,利用奇异值分解(Singular Value Decomposition,SVD)的方法得到用户和产品的语义准确的先验信息,同时避免了用户和产品信息等相关参数的训练,缓解了模型复杂度高的问题。(2)利用双向的门循环单元(GRU)模型代替原有的简单模型,更加有效地结合了文本中的上下文语义信息。实验结果表明:相比传统的文本分类方法,提出的方法有更好的分类效果,在部分实验数据中达到了最好的分类准确度。同时模型的训练速度也得到了提升。
文摘Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically.
文摘This paper studies evolutionary mechanism of parameter selection in the construction of weight function for Nearest Neighbour Estimate in nonparametric regression. Construct an algorithm which adaptively evolves fine weight and makes good prediction about unknown points. The numerical experiments indicate that this method is effective. It is a meaningful discussion about practicability of nonparametric regression and methodology of adaptive model-building.
文摘Evolutionary computation is a kind of adaptive non--numerical computation method which is designed tosimulate evolution of nature. In this paper, evolutionary algorithm behavior is described in terms of theconstruction and evolution of the sampling distributions over the space of candidate solutions. Iterativeconstruction of the sampling distributions is based on the idea of the global random search of generationalmethods. Under this frame, propontional selection is characterized as a gobal search operator, and recombination is characerized as the search process that exploits similarities. It is shown-that by properly constraining the search breadth of recombination operators, weak convergence of evolutionary algorithms to aglobal optimum can be ensured.