Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon...Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.展开更多
To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo...To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.展开更多
为了解决再生细骨料性能劣化问题,采用饱和石灰水溶液预处理加速碳化法,以不同粒径再生细骨料(recycled fine aggregate,RFA)为研究对象,进行吸水率、压碎值和表观密度测试,并采用热分析(TG)、X射线衍射(XRD)和扫描电子显微镜(SEM)等对...为了解决再生细骨料性能劣化问题,采用饱和石灰水溶液预处理加速碳化法,以不同粒径再生细骨料(recycled fine aggregate,RFA)为研究对象,进行吸水率、压碎值和表观密度测试,并采用热分析(TG)、X射线衍射(XRD)和扫描电子显微镜(SEM)等对碳化产物和微观结构进行测试。结果表明,随着RFA粒径减小,吸水率逐渐变大,压碎值和表观密度变小;加速碳化生成的方解石紧密堆积并填充于RFA内部微裂缝,使其吸水率、压碎值降低,表观密度升高;小粒径RFA具有更高的CO_(2)质量吸收率,RFA粒径越小,吸水率降幅越明显;天然骨料碎屑聚集在0.3~0.6 mm的RFA中,阻碍了CO_(2)的吸收,其吸水率降幅最低。展开更多
Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated car...Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.展开更多
For the purpose of providing references for further research and practical application about the quality improvement of RCA,in this paper,various treatment methods were firstly classified into four categories:removing...For the purpose of providing references for further research and practical application about the quality improvement of RCA,in this paper,various treatment methods were firstly classified into four categories:removing old mortar (OM),strengthening OM,multi-stage mixing methods,and combination methods.Thereafter,the improvement mechanisms and important conclusions of various treatment methods were elucidated and summarised respectively.In the section of discussion,the improved effects as well as advantages and disadvantages of various treatment methods were compared and discussed respectively,and recommendations for the selection of treatment methods were proposed.Finally,the further research directions were pointed out,and an integrative programme on the quality improvement of RCA was recommended.展开更多
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023 and GJJ181022)。
文摘Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)the Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023,and GJJ181022)。
文摘To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.
文摘为了解决再生细骨料性能劣化问题,采用饱和石灰水溶液预处理加速碳化法,以不同粒径再生细骨料(recycled fine aggregate,RFA)为研究对象,进行吸水率、压碎值和表观密度测试,并采用热分析(TG)、X射线衍射(XRD)和扫描电子显微镜(SEM)等对碳化产物和微观结构进行测试。结果表明,随着RFA粒径减小,吸水率逐渐变大,压碎值和表观密度变小;加速碳化生成的方解石紧密堆积并填充于RFA内部微裂缝,使其吸水率、压碎值降低,表观密度升高;小粒径RFA具有更高的CO_(2)质量吸收率,RFA粒径越小,吸水率降幅越明显;天然骨料碎屑聚集在0.3~0.6 mm的RFA中,阻碍了CO_(2)的吸收,其吸水率降幅最低。
基金Funded by Joint Funds of the National Natural Science Foundation of China (No.U1904188)Key R&D and Promotion Projects in Henan Province,China (No.212102310288)the Key Science and Technology Program of Henan Province,China (No.202102310253)。
文摘Due to the presence of old mortar (OM) and interfacial transition zone (ITZ),recycled concrete aggregate (RCA) is inferior to natural aggregate (NA).The purpose of this paper was to study the effect of accelerated carbonation on the macro-properties and micro-properties of RCA under different pressure(0.05,0.15,0.30 MPa).The macro-property tests included colour change,apparent density,water absorption,and crushing value of RCA.The micro-property tests included scanning electron microscopy (SEM),X-ray diffraction (XRD),thermogravimetry-differential scanning calorimetry (TG-DSC),and Vickers micro-hardness(VMH).The results showed that the change trends of apparent density,water absorption,and crushing value of RCA displayed exponential relationships as pressure increasing,with the optimum pressure of 0.30 MPa.SEM images indicated that the calcite caused by the hydration products in RCA and the Ca(OH)_(2) derived from saturated lime water improved the properties of RCA;as the apparent density increased,the water absorption and crushing value decreased.The results of XRD and TG-DSC indicated that,as the pressure increased,the masses of Ca(OH)_(2) in carbonated RCA gradually decreased,while those of CaCO_(3) gradually increased,which demonstrated that the carbonation degree gradually increased.Besides,ITZ-2 was the weakest phase in RCA,but its improvement degree of VMH by accelerated carbonation was higher than that of OM.However,RCA was not completely carbonated,but only carbonated in a certain depth after 24 h accelerated carbonation.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)National Science Foundation for Distinguished Young Scholars(No.51608179)the Key Science and Technology Program of Henan Province,China(No.202102310253)。
文摘For the purpose of providing references for further research and practical application about the quality improvement of RCA,in this paper,various treatment methods were firstly classified into four categories:removing old mortar (OM),strengthening OM,multi-stage mixing methods,and combination methods.Thereafter,the improvement mechanisms and important conclusions of various treatment methods were elucidated and summarised respectively.In the section of discussion,the improved effects as well as advantages and disadvantages of various treatment methods were compared and discussed respectively,and recommendations for the selection of treatment methods were proposed.Finally,the further research directions were pointed out,and an integrative programme on the quality improvement of RCA was recommended.