通过试验探究不同密度和含水率对竹基纤维复合材料的静曲强度(modulus of rupture,MOR)以及弹性模量(modulus of elasticity,MOE)的影响,并建立密度和含水率对MOR以及MOE影响的预测模型。结果表明,在测试区间内试板的密度与抗弯性能呈...通过试验探究不同密度和含水率对竹基纤维复合材料的静曲强度(modulus of rupture,MOR)以及弹性模量(modulus of elasticity,MOE)的影响,并建立密度和含水率对MOR以及MOE影响的预测模型。结果表明,在测试区间内试板的密度与抗弯性能呈正相关;随着含水率升高,试板抗弯性能先增大后减小。根据预测模型,压制密度1.17 g/cm^(3)、含水率11%左右的板材可以获得较高的MOR,大约为151.32 MPa;压制密度1.20 g/cm^(3)、含水率10.65%左右的板材可以获得较高的MOE,大约为19.68 GPa。该研究为提高竹基纤维复合材料的抗弯性能以及生产实践提供一定理论指导。展开更多
Introduction With the remarkable properties in mechanical,electronic and magnetic,fabrication of carbon nanotube (CNT) arrays has drawn ever-increasing worldwide attention in application of field emission display (FED...Introduction With the remarkable properties in mechanical,electronic and magnetic,fabrication of carbon nanotube (CNT) arrays has drawn ever-increasing worldwide attention in application of field emission display (FED) and展开更多
The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- na...The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- namic force acting on the polymer-air interface to drive the polymer' s flow into the mold cavities. This electri- cally induced nanostrueturing method no longer requires a large mechanical pressure externally applied for actua- ting the polymer filling in the mold cavities, and has been used to successfully fabricate micro/nano pillar arrays of a high aspect ratio (up to 10), which have been usually considered to be "difficult to fabricate" by conventional molding or nanoimprinting processes.展开更多
UV-nanoimprint lithography (UV-NIL) using a soft mold is a promising technique with low cost and high throughput for producing the submicron scale large-area patterns. However, the deformations of the soft mold during...UV-nanoimprint lithography (UV-NIL) using a soft mold is a promising technique with low cost and high throughput for producing the submicron scale large-area patterns. However, the deformations of the soft mold during imprinting process which can cause serious consequences have to be understood for the practical application of the process. This paper investigated the deformation of the soft mold by theoretical analyses, numerical simulations, and experimental studies. We simulated the mold deformation using a simplified model and finite element method. The simulation and the related experimental results agree well with each other. Through the investigation, the mechanism and affected factors of the mold deformation are revealed, and some useful conclusions have been achieved. These results will be valuable in optimizing the imprinting process conditions and mold design for improving the quality of transferred patterns.展开更多
文摘通过试验探究不同密度和含水率对竹基纤维复合材料的静曲强度(modulus of rupture,MOR)以及弹性模量(modulus of elasticity,MOE)的影响,并建立密度和含水率对MOR以及MOE影响的预测模型。结果表明,在测试区间内试板的密度与抗弯性能呈正相关;随着含水率升高,试板抗弯性能先增大后减小。根据预测模型,压制密度1.17 g/cm^(3)、含水率11%左右的板材可以获得较高的MOR,大约为151.32 MPa;压制密度1.20 g/cm^(3)、含水率10.65%左右的板材可以获得较高的MOE,大约为19.68 GPa。该研究为提高竹基纤维复合材料的抗弯性能以及生产实践提供一定理论指导。
基金This work was supported by 973 Basics Science Research Program (grant No. 2003CBT16203)the National Science Foundation of China (grant No. 50505037)+2 种基金 863 Hi-Tech Program (grant No. 2006AA04Z322 and No. 2006AA05Z411)Xi'An AM Foundation (grant No. XA-AM-200505 and No. XA-AM-200609 )ShanXi Province Foundation (grant No. 2006E109).
文摘Introduction With the remarkable properties in mechanical,electronic and magnetic,fabrication of carbon nanotube (CNT) arrays has drawn ever-increasing worldwide attention in application of field emission display (FED) and
基金Major Research Plan of NSFC on Nanomanufacturing(No.90923040)National Basic Research Program of China(No.2009CB724202)
文摘The paper proposes a novel nano-patterning method called electrically induced nanostructuring, where an external electric field, insteadof the external mechanical pressure, is applied to generate an electrohydrody- namic force acting on the polymer-air interface to drive the polymer' s flow into the mold cavities. This electri- cally induced nanostrueturing method no longer requires a large mechanical pressure externally applied for actua- ting the polymer filling in the mold cavities, and has been used to successfully fabricate micro/nano pillar arrays of a high aspect ratio (up to 10), which have been usually considered to be "difficult to fabricate" by conventional molding or nanoimprinting processes.
基金Supported by the 973 Basics Science Research Program of China (Grant No.2003CB716203)the National Natural Science Foundation of China (Grant No.50775176)the Natural Science Foundation of Shandong Province (Grant No.Y2007F49)
文摘UV-nanoimprint lithography (UV-NIL) using a soft mold is a promising technique with low cost and high throughput for producing the submicron scale large-area patterns. However, the deformations of the soft mold during imprinting process which can cause serious consequences have to be understood for the practical application of the process. This paper investigated the deformation of the soft mold by theoretical analyses, numerical simulations, and experimental studies. We simulated the mold deformation using a simplified model and finite element method. The simulation and the related experimental results agree well with each other. Through the investigation, the mechanism and affected factors of the mold deformation are revealed, and some useful conclusions have been achieved. These results will be valuable in optimizing the imprinting process conditions and mold design for improving the quality of transferred patterns.