Gelatin ceftiofur alkali microsphere was prepared to observe its characteristics and evaluate preservation conditions. The glutaraldehyde was increased and the carboxylic methyl chitosan was added to improve the micro...Gelatin ceftiofur alkali microsphere was prepared to observe its characteristics and evaluate preservation conditions. The glutaraldehyde was increased and the carboxylic methyl chitosan was added to improve the microsphere. The experimental results show microspheres have a better morphology surface and fairly regular structure with 4% glutaraldehyde. The average particle size is 15.84 gm and particle size distribution is narrow which shows a good uniformity. Microsphere size was affected by the stirrer speed, dosing ratio and curing degree. The greater drug loaded is, the better microspheres loading is; but with the increase of drug loading rate, the entrapment efficiency increases first and then decreases. The drug release rate of the microsphere is 24.90% in 0.5 h and 84.90% in 48 h, when CMC-GMs with 4% curing agent is 32.03% in 0.5 h and 88.44% in 48 h. So Gms embedding of ceftiofur alkali are better than CMC-GM. The stability tests show that strong light, high temperature, high humidity have a great influence on the microspheres.展开更多
We developed poly lactic-co-glycolic acid(PLGA) microspheres loaded with cefquinome and tested their effectiveness in a mouse model. The microspheres were prepared by optimizing several key parameters such as PLGA m...We developed poly lactic-co-glycolic acid(PLGA) microspheres loaded with cefquinome and tested their effectiveness in a mouse model. The microspheres were prepared by optimizing several key parameters such as PLGA molecular weight, drug/polymer ratio, internal water volume and ethyl acetate. Drug loading efficiency, stability, in vitro release and tissue distribution in mouse were evaluated. The average particle size of the microspheres was 27.84 μm. The drug loading efficiency was 64.57%. The in vitro release of cefquinome from microspheres after 4 h was about 40% compared with over 90% for the drug alone. The concentration of cefquinome in lung reached 25 μg/g 0.25 h after injection, and kept at 10 μg/g 4 h after injection. However, the concentration of cefquinome was very low in other organs even 0.25 h after injection. In conclusion, Cefquinome-loaded PLGA microspheres are compatible as an effective lung-targeting drug delivery system and have a good sustained release efficacy.展开更多
文摘Gelatin ceftiofur alkali microsphere was prepared to observe its characteristics and evaluate preservation conditions. The glutaraldehyde was increased and the carboxylic methyl chitosan was added to improve the microsphere. The experimental results show microspheres have a better morphology surface and fairly regular structure with 4% glutaraldehyde. The average particle size is 15.84 gm and particle size distribution is narrow which shows a good uniformity. Microsphere size was affected by the stirrer speed, dosing ratio and curing degree. The greater drug loaded is, the better microspheres loading is; but with the increase of drug loading rate, the entrapment efficiency increases first and then decreases. The drug release rate of the microsphere is 24.90% in 0.5 h and 84.90% in 48 h, when CMC-GMs with 4% curing agent is 32.03% in 0.5 h and 88.44% in 48 h. So Gms embedding of ceftiofur alkali are better than CMC-GM. The stability tests show that strong light, high temperature, high humidity have a great influence on the microspheres.
基金Funded by the national key research and development plan(No.2016YFD0501309)the National Natural Science Foundation of China(31402256)the High-level Talent Research Foundation of Qingdao Agricultural University,China(631206)
文摘We developed poly lactic-co-glycolic acid(PLGA) microspheres loaded with cefquinome and tested their effectiveness in a mouse model. The microspheres were prepared by optimizing several key parameters such as PLGA molecular weight, drug/polymer ratio, internal water volume and ethyl acetate. Drug loading efficiency, stability, in vitro release and tissue distribution in mouse were evaluated. The average particle size of the microspheres was 27.84 μm. The drug loading efficiency was 64.57%. The in vitro release of cefquinome from microspheres after 4 h was about 40% compared with over 90% for the drug alone. The concentration of cefquinome in lung reached 25 μg/g 0.25 h after injection, and kept at 10 μg/g 4 h after injection. However, the concentration of cefquinome was very low in other organs even 0.25 h after injection. In conclusion, Cefquinome-loaded PLGA microspheres are compatible as an effective lung-targeting drug delivery system and have a good sustained release efficacy.