期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
GPU的并行支持向量机算法(英文)
被引量:
6
1
作者
do thanh-nghi
NGUYEN Van-Hoa
POULET Franqois
《计算机科学与探索》
CSCD
2009年第4期368-377,共10页
提出了一种新的并行增量式支持向量机算法来解决图形处理单元(GPU)中大规模数据集的分类问题。SVM以及核相关方法可以用来创建精确分类模型,但学习过程需要大量内存和很长时间。扩展了Suykens和Vandewalle提出的最少次方SVM(LS-SVM)方...
提出了一种新的并行增量式支持向量机算法来解决图形处理单元(GPU)中大规模数据集的分类问题。SVM以及核相关方法可以用来创建精确分类模型,但学习过程需要大量内存和很长时间。扩展了Suykens和Vandewalle提出的最少次方SVM(LS-SVM)方法来建立增量和并行算法。新算法使用图形处理器以低代价获得高系统性能。实现表明,在UCI和Delve数据集上,基于GPU并行增量算法较CPU实现方法快130倍,而且比现行算法,如LibSVM、SVM-perf和CB-SVM等快的多(超过2500倍)。
展开更多
关键词
支持向量机
图形处理器
最少次方SVM
下载PDF
职称材料
题名
GPU的并行支持向量机算法(英文)
被引量:
6
1
作者
do thanh-nghi
NGUYEN Van-Hoa
POULET Franqois
机构
College of Information Technology
INRIA Rennes
Universite de Rennes I
出处
《计算机科学与探索》
CSCD
2009年第4期368-377,共10页
文摘
提出了一种新的并行增量式支持向量机算法来解决图形处理单元(GPU)中大规模数据集的分类问题。SVM以及核相关方法可以用来创建精确分类模型,但学习过程需要大量内存和很长时间。扩展了Suykens和Vandewalle提出的最少次方SVM(LS-SVM)方法来建立增量和并行算法。新算法使用图形处理器以低代价获得高系统性能。实现表明,在UCI和Delve数据集上,基于GPU并行增量算法较CPU实现方法快130倍,而且比现行算法,如LibSVM、SVM-perf和CB-SVM等快的多(超过2500倍)。
关键词
支持向量机
图形处理器
最少次方SVM
Keywords
support vector machine (SVM)
general purpose graphics processing units (GP-GPU)
least squares SVM (LS-SVM)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
GPU的并行支持向量机算法(英文)
do thanh-nghi
NGUYEN Van-Hoa
POULET Franqois
《计算机科学与探索》
CSCD
2009
6
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部