A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analy...A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.展开更多
A numerical study adopting the 2Dδ-SPH model is performed to compare the hydrodynamic characteristics of a single pontoon floating breakwater and a double pontoon floating breakwater.Numerical simulations are perform...A numerical study adopting the 2Dδ-SPH model is performed to compare the hydrodynamic characteristics of a single pontoon floating breakwater and a double pontoon floating breakwater.Numerical simulations are performed using theδ-SPH model and experimental tests are conducted to validate the numerical model.The numerical results of both the free surface elevations and motions of the floating breakwater are in good agreement with the experimental results.Numerical results show that when the pontoon drafts are larger,the double pontoon floating breakwater performs better in wave attenuations compared with the single pontoon floating breakwater,and for all the drafts,the amplitudes of motions including sway,heave and roll of the double pontoon floating breakwater is always smaller.In addition,increasing the spacing between the two pontoons can further reduce the amplitudes of pontoon motions and improve the wave attenuation ability of the double pontoon floating breakwater.展开更多
基金supported by the New Cornerstone Science Foundation through the XPLORER PRIZE and the National Natural Science Foundation of China(Grant No.52088102).
文摘A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted.
基金supported by the National Natural Science Foundation of China(Grant Nos.51725903 and 52088102).
文摘A numerical study adopting the 2Dδ-SPH model is performed to compare the hydrodynamic characteristics of a single pontoon floating breakwater and a double pontoon floating breakwater.Numerical simulations are performed using theδ-SPH model and experimental tests are conducted to validate the numerical model.The numerical results of both the free surface elevations and motions of the floating breakwater are in good agreement with the experimental results.Numerical results show that when the pontoon drafts are larger,the double pontoon floating breakwater performs better in wave attenuations compared with the single pontoon floating breakwater,and for all the drafts,the amplitudes of motions including sway,heave and roll of the double pontoon floating breakwater is always smaller.In addition,increasing the spacing between the two pontoons can further reduce the amplitudes of pontoon motions and improve the wave attenuation ability of the double pontoon floating breakwater.