A fast analytical method for the simultaneous determination of 9 mycotoxins, including alfatoxins (B1, B2, G1, and G2), fumonisins (B1, B2 and B3), zearalenone, and deoxynivalenol in corn using dispersive solid-ph...A fast analytical method for the simultaneous determination of 9 mycotoxins, including alfatoxins (B1, B2, G1, and G2), fumonisins (B1, B2 and B3), zearalenone, and deoxynivalenol in corn using dispersive solid-phase extraction method and ultra-performance liquid chromatography coupled to tandem quadrupole time-of-lfight mass spectrometry (UPLC-Q-TOF-MS) was developed and validated. Samples were extracted with acetonitrile-water (84:16, v:v, containing 1% acetic acid) using ultrasonic extraction. The extracts were puriifed with a dispersive SPE method using C18 as a cleaning agent. The ifnal clear extracts were dried by nitrogen blowing and subsequently redissolved in methanol-water (5:5, v:v). The samples were then analyzed by UPLC-Q-TOF-MS with 0.1% formic acid in ammonium acetate-methanol as mobile phase. The mean recoveries were ranged from 68.0 to 120.0%, and the relative standard deviation (RSD) ranged from 0.18 to 6.29%. Limits of detections ranged from 0.05 to 50 μg kg?1, and limits of quantiifcation ranged from 0.1 to 200 μg kg?1, which were below the legal limits set by the European Union for the legislated mycotoxins. The developed method was applied to 130 corn samples. Among the mycotoxins studied, alfatoxins B1 and fumonisins B1, B2 and B3 were the most predominant mycotoxins, and their concentrations were 0–593.12, 0–2.01×104, 0–6.94×103 and 0–3.05×103 μg kg–1, respectively.展开更多
The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbon...The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbonates on CO2 emission from calcareous soil during closed-jar incubation, three incubation experiments were conducted by adding different types (CaCO3 and MgCO3) and amounts of carbonate to the soil. The addition of carbonates significantly increased CO2 emission from the soil; the increase ranged from 12.0~ in the CaCO3 amended soil to 460~0 in the MgCO3 amended soil during a 100-d incubation. Cumulative CO2 production at the end of the incubation was three times greater in the MgCO3 amended soil compared to the CaCO3 amended one. The CO2 emission increased with the amount of CaCO3 added to the soil. In contrast, CO2 emission decreased as the amount of MgCO3 added to the soil increased. Our results confirmed that the closed-jar incubation method could lead to an overestimate of organic C mineralization in calcareous soils. Because of its effect on soil pH and the dissolution of carbonates, HgC12 should not be used to sterili~.e calcareous soil if the experiment includes the measurement of soil CO2 production.展开更多
基金supported by the Key Project of Science and Technology Development Program of Shandong Province,China(2013KF03)
文摘A fast analytical method for the simultaneous determination of 9 mycotoxins, including alfatoxins (B1, B2, G1, and G2), fumonisins (B1, B2 and B3), zearalenone, and deoxynivalenol in corn using dispersive solid-phase extraction method and ultra-performance liquid chromatography coupled to tandem quadrupole time-of-lfight mass spectrometry (UPLC-Q-TOF-MS) was developed and validated. Samples were extracted with acetonitrile-water (84:16, v:v, containing 1% acetic acid) using ultrasonic extraction. The extracts were puriifed with a dispersive SPE method using C18 as a cleaning agent. The ifnal clear extracts were dried by nitrogen blowing and subsequently redissolved in methanol-water (5:5, v:v). The samples were then analyzed by UPLC-Q-TOF-MS with 0.1% formic acid in ammonium acetate-methanol as mobile phase. The mean recoveries were ranged from 68.0 to 120.0%, and the relative standard deviation (RSD) ranged from 0.18 to 6.29%. Limits of detections ranged from 0.05 to 50 μg kg?1, and limits of quantiifcation ranged from 0.1 to 200 μg kg?1, which were below the legal limits set by the European Union for the legislated mycotoxins. The developed method was applied to 130 corn samples. Among the mycotoxins studied, alfatoxins B1 and fumonisins B1, B2 and B3 were the most predominant mycotoxins, and their concentrations were 0–593.12, 0–2.01×104, 0–6.94×103 and 0–3.05×103 μg kg–1, respectively.
基金Supported by the National Natural Science Foundation of China(Nos.40571087 and 40773057)the National Key Technologies Research and Development Program of China during the 11th Five-Year Plan Period(No.2007BAD89B02)
文摘The closed-jar incubation method is widely used to estimate the mineralization of soil organic C. There are two C pools (i.e., organic and inorganic C) in calcareous soil. To evaluate the effect of additional carbonates on CO2 emission from calcareous soil during closed-jar incubation, three incubation experiments were conducted by adding different types (CaCO3 and MgCO3) and amounts of carbonate to the soil. The addition of carbonates significantly increased CO2 emission from the soil; the increase ranged from 12.0~ in the CaCO3 amended soil to 460~0 in the MgCO3 amended soil during a 100-d incubation. Cumulative CO2 production at the end of the incubation was three times greater in the MgCO3 amended soil compared to the CaCO3 amended one. The CO2 emission increased with the amount of CaCO3 added to the soil. In contrast, CO2 emission decreased as the amount of MgCO3 added to the soil increased. Our results confirmed that the closed-jar incubation method could lead to an overestimate of organic C mineralization in calcareous soils. Because of its effect on soil pH and the dissolution of carbonates, HgC12 should not be used to sterili~.e calcareous soil if the experiment includes the measurement of soil CO2 production.