真值发现是数据集成领域具有挑战性的研究热点之一。传统的方法利用数据源与观测值之间的交互关系推断真值,缺乏足够的特征信息;基于深度学习的方法可以有效地进行特征抽取,但其性能依赖于大量手工标注,而在实际应用中很难获取到大量高...真值发现是数据集成领域具有挑战性的研究热点之一。传统的方法利用数据源与观测值之间的交互关系推断真值,缺乏足够的特征信息;基于深度学习的方法可以有效地进行特征抽取,但其性能依赖于大量手工标注,而在实际应用中很难获取到大量高质量的真值标签。为克服以上问题,本文提出一种基于多特征融合的无监督真值发现方法(Unsupervised truth discovery method based on multi-feature fusion,MFOTD)。首先,利用集成学习无监督标注“真值”标签;然后,分别使用预训练模型Bert和独热编码获取观测值的语义特征和交互特征;最后,融合观测值多种特征并使用其“真值”标签构建初始训练集,通过自训练方式训练真值预测模型。在两个真实数据集上的实验结果表明,与已有方法相比,本文所提出的方法具有更高的真值发现准确性。展开更多
糖尿病视网膜病变是由糖尿病引起的一种重要眼部疾病,不及时治疗可能会导致失明,现有的诊断方法主要依靠医生手动分类,但这种方法耗时耗力.随着深度学习的发展,越来越多的自动分类技术被应用到医学领域.针对糖尿病视网膜病变严重程度的...糖尿病视网膜病变是由糖尿病引起的一种重要眼部疾病,不及时治疗可能会导致失明,现有的诊断方法主要依靠医生手动分类,但这种方法耗时耗力.随着深度学习的发展,越来越多的自动分类技术被应用到医学领域.针对糖尿病视网膜病变严重程度的分类问题,样本图像十分稀缺,传统的单支模型很难达到较高的分类性能,提出一种孪生结构的分类模型Siamese Model with Swin-Transformer and MLP-Based U-Net(SSM),并利用数据扩增来解决此问题.首先,利用直方图均衡化、高斯滤波和增强对比度等方法预处理图像;然后,将预训练的Swin-Transformer作为SSM模型的特征提取分支网络来获得层次化的特征表示;此外,还设计了一个含有跳跃连接结构的MLP-Based U-Net(MU-Net)作为SSM模型的分类器来对提取的特征进行分类.在Messidor数据集上进行训练和测试,与现有最先进的模型相比,SSM模型性能更优,在测试集上的精确率达0.976,召回率达0.975,F1达0.976,准确率达0.975,Kappa系数达0.967.展开更多
In this paper, we study the virtual resource(VR) allocation problem in LTE-based wireless network virtualization(WNV). A practical network scenario, where multiple virtual wireless service providers(WSPs)request the V...In this paper, we study the virtual resource(VR) allocation problem in LTE-based wireless network virtualization(WNV). A practical network scenario, where multiple virtual wireless service providers(WSPs)request the VR from a unique mobile network operator(MNO) is considered. Our objective is two folds. The first is to guarantee the minimum rate requirements of the MNO and the WSPs. The second is to distribute the system rate among the MNO and the WSPs in the Pareto optimal manner. To this end, an efficient VR allocation scheme based on bargaining game theory is proposed, and the Nash bargaining solution(NBS) method is used to solve the proposed game problem. The proposed game problem is proved to be a convex optimization problem. By using standard convex optimization method, the global optimal NBS of the game is obtained in closed form. The effectiveness of the proposed VR allocation game is testified through numerical results.展开更多
文摘真值发现是数据集成领域具有挑战性的研究热点之一。传统的方法利用数据源与观测值之间的交互关系推断真值,缺乏足够的特征信息;基于深度学习的方法可以有效地进行特征抽取,但其性能依赖于大量手工标注,而在实际应用中很难获取到大量高质量的真值标签。为克服以上问题,本文提出一种基于多特征融合的无监督真值发现方法(Unsupervised truth discovery method based on multi-feature fusion,MFOTD)。首先,利用集成学习无监督标注“真值”标签;然后,分别使用预训练模型Bert和独热编码获取观测值的语义特征和交互特征;最后,融合观测值多种特征并使用其“真值”标签构建初始训练集,通过自训练方式训练真值预测模型。在两个真实数据集上的实验结果表明,与已有方法相比,本文所提出的方法具有更高的真值发现准确性。
文摘糖尿病视网膜病变是由糖尿病引起的一种重要眼部疾病,不及时治疗可能会导致失明,现有的诊断方法主要依靠医生手动分类,但这种方法耗时耗力.随着深度学习的发展,越来越多的自动分类技术被应用到医学领域.针对糖尿病视网膜病变严重程度的分类问题,样本图像十分稀缺,传统的单支模型很难达到较高的分类性能,提出一种孪生结构的分类模型Siamese Model with Swin-Transformer and MLP-Based U-Net(SSM),并利用数据扩增来解决此问题.首先,利用直方图均衡化、高斯滤波和增强对比度等方法预处理图像;然后,将预训练的Swin-Transformer作为SSM模型的特征提取分支网络来获得层次化的特征表示;此外,还设计了一个含有跳跃连接结构的MLP-Based U-Net(MU-Net)作为SSM模型的分类器来对提取的特征进行分类.在Messidor数据集上进行训练和测试,与现有最先进的模型相比,SSM模型性能更优,在测试集上的精确率达0.976,召回率达0.975,F1达0.976,准确率达0.975,Kappa系数达0.967.
基金supported in part by China University of Mining and Technology Funds for Academic Frontier Research(Grant No.2015XKQY18)National High-tech R&D Program of China(863 Program)(Grant Nos.2015AA015701+1 种基金2015AA01A705)National Natural Science Foundation of China(Grant No.61100167)
文摘In this paper, we study the virtual resource(VR) allocation problem in LTE-based wireless network virtualization(WNV). A practical network scenario, where multiple virtual wireless service providers(WSPs)request the VR from a unique mobile network operator(MNO) is considered. Our objective is two folds. The first is to guarantee the minimum rate requirements of the MNO and the WSPs. The second is to distribute the system rate among the MNO and the WSPs in the Pareto optimal manner. To this end, an efficient VR allocation scheme based on bargaining game theory is proposed, and the Nash bargaining solution(NBS) method is used to solve the proposed game problem. The proposed game problem is proved to be a convex optimization problem. By using standard convex optimization method, the global optimal NBS of the game is obtained in closed form. The effectiveness of the proposed VR allocation game is testified through numerical results.