Activities of hexokinase (HK), pyruvate kinase (PK), superoxide dismutase (SOD) and catalase (CAT) and Hsp70 level were measured to evaluate the response of the commercially important sea cucumber (Apostichop...Activities of hexokinase (HK), pyruvate kinase (PK), superoxide dismutase (SOD) and catalase (CAT) and Hsp70 level were measured to evaluate the response of the commercially important sea cucumber (Apostichopus japonicus Selenka) to rapid temperature changes in laboratory. Animals were subjected to a higher temperature (from 10 to 20℃) (Tinc treatment) or to a lower temperature (from 20 to 10℃) (Tddec treatment) for 72 h. At 1, 3, 12, 24, 72 h of exposure, animals were removed and prepared for further analysis. Results showed that the effect of acute temperature changes on enzyme activities was significant. In Tinc treatment, activities of SOD and CAT increased immediately. The significant enhancement of SOD and CAT activities suggested that oxidative stress increases significantly when ambient temperature increasing from 10 to 20℃. The up-regulation of Flsp70 in Tinc and Tdec treatments indicated that Hsp70 was a bioindicator of thermal stress in the sea cucumber, and the expression pattern depended on the thermal treatment.展开更多
文摘Activities of hexokinase (HK), pyruvate kinase (PK), superoxide dismutase (SOD) and catalase (CAT) and Hsp70 level were measured to evaluate the response of the commercially important sea cucumber (Apostichopus japonicus Selenka) to rapid temperature changes in laboratory. Animals were subjected to a higher temperature (from 10 to 20℃) (Tinc treatment) or to a lower temperature (from 20 to 10℃) (Tddec treatment) for 72 h. At 1, 3, 12, 24, 72 h of exposure, animals were removed and prepared for further analysis. Results showed that the effect of acute temperature changes on enzyme activities was significant. In Tinc treatment, activities of SOD and CAT increased immediately. The significant enhancement of SOD and CAT activities suggested that oxidative stress increases significantly when ambient temperature increasing from 10 to 20℃. The up-regulation of Flsp70 in Tinc and Tdec treatments indicated that Hsp70 was a bioindicator of thermal stress in the sea cucumber, and the expression pattern depended on the thermal treatment.