Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase MgnAln is near...Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase MgnAln is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface. The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250um. Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.展开更多
Surface treatment of magnesium alloys AZ31 and AZ91HP by a high current pulsed electron beam (HCPEB) was investigated in the present paper. The corrosion resistance of treated samples was tested in a 5% (wt%) NaCl sol...Surface treatment of magnesium alloys AZ31 and AZ91HP by a high current pulsed electron beam (HCPEB) was investigated in the present paper. The corrosion resistance of treated samples was tested in a 5% (wt%) NaCl solution, showing remarkably improvement as manifested by polarization curves. According to EPMA analysis, the intermetallic Mg17Al12 in the surface layer of AZ91HP sample almost disappeared after the treatment of HCPEB, leaving the surface layer in a state of supersaturated solid solution. Both the augmentation of aluminum content and the formation of supersaturated structure in the surface layer are believed to contribute to the improved corrosion resistance of AZ31 and AZ91HP.展开更多
A pseudo-ternary alloy system was constructed by combining an icosahedralquasicrystal (IQC), a decagonal quasicrystal (DQC), and Zr into one alloy system. Differentproportions of Zr were added to pseudo-binary alloy I...A pseudo-ternary alloy system was constructed by combining an icosahedralquasicrystal (IQC), a decagonal quasicrystal (DQC), and Zr into one alloy system. Differentproportions of Zr were added to pseudo-binary alloy IQC_(80)DQC_(20) (mass fraction in %);Structural evolution in these alloys was discussed. An amorphous alloy composition was found in thissystem and a melt-spinning amorphous alloy was produced in this composition. Through DSC analysis,the amorphous alloy exhibits high glass forming ability comparable to that of the InoueZr_(65)Al_(7.5)Cu_(17.5)Ni_(10) amorphous alloy.展开更多
The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding.The dynamics of gradient bioceramic composite coating containing hydroxyapatite(HA)prepared with mixture of ...The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding.The dynamics of gradient bioceramic composite coating containing hydroxyapatite(HA)prepared with mixture of CaHPO4·2H2O and CaCO3 under the condition of wide-band laser was studied theoretically.The corresponding mathematical model and its numerical solution were presented.The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters.The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction.The experimental results showed that the bioceramic coating is composed of HA,β-TCP,CaO,CaTiO3 and TiO2.The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure,which helps osteoblast grow into bioceramic and improves the biocompatibility.展开更多
文摘Surface modification of magnesium alloy AZ91HP (9wt%Al, 0.5wt%Zn, 0.5wt%Mn, Mg remaining percentage) by high current pulsed electron beam (HCPEB) treatment was studied in this paper. The secondary phase MgnAln is nearly completely dissolved and as a result, a super-saturated solid solution forms on the re-melted surface. The microhardness is increased both in and far beyond the heat-affected zone (HAZ), reaching about 250um. Measurements on sliding wear have shown that the wear resistance of the treated samples was improved by a factor of about 2.4 as compared to the as-received sample. It is also found that the sliding wear resistance can be further improved by surface alloying with TiN.
基金the scientific research foundation for the returned overseas Chinese scholars from state education ministry of P.R.China.
文摘Surface treatment of magnesium alloys AZ31 and AZ91HP by a high current pulsed electron beam (HCPEB) was investigated in the present paper. The corrosion resistance of treated samples was tested in a 5% (wt%) NaCl solution, showing remarkably improvement as manifested by polarization curves. According to EPMA analysis, the intermetallic Mg17Al12 in the surface layer of AZ91HP sample almost disappeared after the treatment of HCPEB, leaving the surface layer in a state of supersaturated solid solution. Both the augmentation of aluminum content and the formation of supersaturated structure in the surface layer are believed to contribute to the improved corrosion resistance of AZ31 and AZ91HP.
基金This work wax financially supported by the French-Chinese Advanced Research Program on Materials (PRA MX 99/04) and by the National Natural Science Foundation of China (Nos. 59971014 and 50071013)
文摘A pseudo-ternary alloy system was constructed by combining an icosahedralquasicrystal (IQC), a decagonal quasicrystal (DQC), and Zr into one alloy system. Differentproportions of Zr were added to pseudo-binary alloy IQC_(80)DQC_(20) (mass fraction in %);Structural evolution in these alloys was discussed. An amorphous alloy composition was found in thissystem and a melt-spinning amorphous alloy was produced in this composition. Through DSC analysis,the amorphous alloy exhibits high glass forming ability comparable to that of the InoueZr_(65)Al_(7.5)Cu_(17.5)Ni_(10) amorphous alloy.
基金Sponsored by Governor′s Foundation of Guizhou Province(2004-10)
文摘The gradient bioceramic coating was prepared on the surface of titanium alloy using wide-band laser cladding.The dynamics of gradient bioceramic composite coating containing hydroxyapatite(HA)prepared with mixture of CaHPO4·2H2O and CaCO3 under the condition of wide-band laser was studied theoretically.The corresponding mathematical model and its numerical solution were presented.The examination experiment showed that HA bioceramic composite coatings can be obtained by appropriately choosing wide-band laser cladding parameters.The microstructure and surface morphology of HA bioceramic coating were observed by SEM and X-ray diffraction.The experimental results showed that the bioceramic coating is composed of HA,β-TCP,CaO,CaTiO3 and TiO2.The surface of bioceramic coating takes coral-shaped structure or short-rod piled structure,which helps osteoblast grow into bioceramic and improves the biocompatibility.