The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvl...The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvlang'variety under a continuous planting regime of one,four,and seven years,and a replanting regime of one and four years.Under the condition of continuous planting,with the increase of number of years,pH,ammonium nitrogen,and nitrate nitrogen decreased in the rhizosphere and non-rhizosphere soils,whereas organic matter,available phosphorus and potassium,enzyme activities,and the number of bacteria,fungi,and actinomycetes increased.Under the condition of replanting,with the increase of number of years,fungi and actinomycetes in both soils increased,while pH,organic matter,nutrients,enzyme activities,and bacterial number decreased.pH,organic matter,nutrient content,enzyme activity and the number of bacterial were lower in soil replanted for four years,whereas the abundance of fungi and actinomycetes was higher,altering the soil from“bacterial high-fertility”to“fungal low-fertility”with increasing years of replanting.The activity of antioxidant enzymes and MDA content in roots of peony in replanting were higher than those in continuous planting,while the content of osmotic regulatory substances in replanting was lower than that in continuous planting.The results showed that there were no obvious adverse factors in soil during seven years of continuous planting,and herbaceous peony could maintain normal growth and development.However,soils after four years of replanting were not suitable for herbaceous peony growth.Benzoic acid increased with years of replanting,which potentially caused replanting problems.This study provides a theoretical basis for understanding the mechanism of replanting problems in the herbaceous peony.展开更多
A hill can be regarded as an environmental carrier of heat.Water,rocks and the internal moisture naturally pre-sent in such environment constitute a natural heat accumulator.In the present study,the heat and moisture ...A hill can be regarded as an environmental carrier of heat.Water,rocks and the internal moisture naturally pre-sent in such environment constitute a natural heat accumulator.In the present study,the heat and moisture trans-fer characteristics in a representative hill cave have been simulated via a method relying on the Darcy’s law.The simulations have been conducted for both steady and unsteady conditions to discern the influence of permeability and geometric parameters on the thermal and moisture transfer processes.The reliability of the simulation has been verified through comparison of the numerical results with the annual observation data.As revealed by the numericalfindings,the internal temperature of the hill accumulator is proportional to the permeability,outside surface temperature,overground height,underground constant temperature layer depth,and underground tem-perature of the hill,and it is inversely proportional to the horizontal size of the hill.Moreover,in the considered case,the order of magnitude of the permeability of the hill is contained in the range 10-15–10-13,and displays a certain sensitivity to the rainwater seepage.展开更多
Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study...Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome(ARRS).This study attempted to explore the impact of the ROR2:c.904C>T variant specifically on the osteogenic differentiation of BMSCs.Methods:Coimmunoprecipitation(CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a.Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a in bone marrow mesenchymal stem cells(BMSCs).Western blot(WB)analysis and quantitative reverse transcription polymerase chain reaction(RT-qPCR)were conducted to identify the expression levels of ROR2 in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T.The alkaline phosphatase(ALP)activity was detected,and Alizarin Red S staining was done for evaluating the osteogenic differentiation of BMSCs.RT-qPCR was employed to identify the expression of the sphingomyelin synthase 1(SMS1)mRNA in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T and the mRNA expression levels of Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),and osteopontin(OPN).WB was performed to confirm the protein expressions of extracellular regulated protein kinases1(ERK),P-ERK,Smad family member1/5/8(Smad1/5/8),P-Smad1/5/8,P-P38,P38,RUNX2,OCN,and OPN in the BMSCs transfected with LV-shROR2/LV-ROR2-c.904C>T and sphingomyelin(SM).Results:The ROR2:c.904C>T mutant altered the subcellular localization of the ROR2 protein,which caused an impaired interaction between ROR2 and Wnt5a.The depletion of ROR2 restricted the osteogenic differentiation capability of BMSCs and downregulated the expression of SMS1.SM treatment could reverse the inhibition of osteoblastic differentiation in ROR2-depleted BMSCs.Conclusion:The findings of this work revealed that the ROR2:c.904C>T variant led to the loss of function of ROR2,which impaired the interaction between ROR2 and Wnt5a and also controlled the osteogenic differentiation capability of BMSCs.Furthermore,SM was revealed to be engaged in the osteoblastic differentiation of BMSCs regulated by ROR2,which renders SM a potential target in the therapy for ARRS.展开更多
Herbaceous peony is an ornamental plant with medicinal properties. Waterlogging can affect its yield and quality as it grows and matures. In this study, we subjected “Taohuafeixue”, “Yangfeichuyu” and “Hongxiuqiu...Herbaceous peony is an ornamental plant with medicinal properties. Waterlogging can affect its yield and quality as it grows and matures. In this study, we subjected “Taohuafeixue”, “Yangfeichuyu” and “Hongxiuqiu” herbaceous peony varieties to a simulated waterlogging stress treatment and investigated the effects of waterlogging on their physiological characteristics and the secondary metabolite contents in their leaves and roots. Short-term waterlogging caused the leaves to turn yellow or red and the roots to turn black. The stele and the cell wall of the endothelial cells thickened, and the cortical cells enlarged. Waterlogging did not significantly change plant height, leaf length, <span style="font-family:Verdana;">and leaf area;however, it significantly decreased the root-shoot ratio of</span><span style="font-family:Verdana;"> “Yang</span><span style="font-family:Verdana;">feichuyu” and “Hongxiuqiu” varieties. The activity of antioxidant enzymes</span><span style="font-family:Verdana;"> and the content of osmotic regulators increased under waterlogging. After short-</span><span style="font-family:Verdana;">term waterlogging stress treatment, the content of paeoniflorin and albiflorin increased in the roots of “Taohuafeixue” and “Yangfeichuyu”, and the content of benzoylpaeoniflorin increased in the root of “Hongxiuqiu”</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The content of gallic acid and total flavonoids increased in the leaves of “Taohuafeixue” and “Yangfeichuyu”. After the waterlogging, paeoniflorin and benzoylpaeoniflorin increased in the </span><span style="font-family:Verdana;">autumn root of “Hongxiuqiu”.</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">This study expands our knowledge about the medicinal properties of herbaceous peony and informs about its production and cultivation under waterlogged conditions.</span>展开更多
<i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:""><span style="font-family:Verdana;"> Pall. var. <...<i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:""><span style="font-family:Verdana;"> Pall. var. </span><i><span style="font-family:Verdana;">trichocarpa </span></i><span style="font-family:Verdana;">is a variety of </span><i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:Verdana;"> Pall., and is currently the peony herb</span></span><span style="font-family:Verdana;">’</span><span style="font-family:""><span style="font-family:Verdana;">s principal cultivar group. Here, we study the differences in aromatic components and flowers of different varieties between two groups of cultivars, providing a reference for applying natural fragrance substances of peonies, breeding fragrant flower types, and developing and </span><span style="font-family:Verdana;">using improved varieties. Headspace solid-phase microextraction (HS-SPME),</span> <span style="font-family:Verdana;">gas chromatography-mass spectrometry (GC-MS), peak area normalization for</span><span style="font-family:Verdana;"> each component relative to content, component library (NIST14/NIST14S) retrieval, and a literature review were used to analyze the volatile compounds in flowers of eight peony varieties, such as </span></span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Gaoganhong</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;">, and ten comospore peony varieties, such as </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Jinshanhong</span><span style="font-family:Verdana;">”</span><span style="font-family:""><span style="font-family:Verdana;">. Results showed that the main volatile compound constituents in flowers of the two groups were terpenes and alcohols. Additionally, the content of eucalyptol, caryophyllene, α-Pinene, citronellol, and 3-Hexen-1-ol, acetate, (Z) was high. Peony cultivars contained linalool,</span><span style="font-family:Verdana;"> (1R)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene, and 1,4-dimethoxybenzene,</span><span style="font-family:Verdana;"> while comospore peony varieties contained 1,3,6-octatriene, 3,7-dimethyl-, (Z)-, phenylethyl alcohol, and geraniol. In this study, the differences between the volatile components of flowers of different peony varieties were clarified, laying a foundation for further molecular biology research into the floral fragrance of peonies and the cultivation of new varieties of aromatic peonies. At the same time, it also provides a theoretical basis for the development and application of peony flower by-products.展开更多
The root of herbaceous peony (<i>Paeonia lactiflora</i> Pall.) is fleshy, and different varieties have different tolerance to waterlogging stress. In order to explore its response and recovery characterist...The root of herbaceous peony (<i>Paeonia lactiflora</i> Pall.) is fleshy, and different varieties have different tolerance to waterlogging stress. In order to explore its response and recovery characteristics to waterlogging stress, six varieties of herbaceous peony with strong, medium and weak waterlogging tolerance and high ornamental value were selected as experimental materials. After the vegetative growth of each variety was completed, the field simulated waterlogging stress experiment was carried out by the semi-flooded (the water surface is half the height of the flowerpot) pot method. Changes in photosynthetic p<span>arameters, chlorophyll fluorescence parameters, relative water content (R</span>WC), relative conductivity (REC), chlorophyll content, lutein cycle, and leaf microstructure were analyzed during recovery from waterlogging stress and stress relief. The results showed that the time of reaching the most significant difference between CK and tested varieties was different. From the beginning of <span>stress to 60% of the leaves with symptoms, the varieties with strong and m</span>oderate waterlogging tolerance experienced longer time;the proportion of palisade tissue in leaves was larger;the maximum photochemical quantum yield (Fv/Fm) was reduced less;it could increase xanthophyll cycle and heat dissi<span>pation (NPQ) to consume excess light energy, and maintain a higher net ph</span>otosynthetic rate (Pn) for normal growth of plants in a short period of time. The REC in leaves of varieties with weak waterlogging tolerance increased more, and the damage of cell membrane was more serious. After the stress was removed, all indexes recovered to different degrees. Based on our comprehensive analysis, the comprehensive waterlogging resistance of the experimental materials followed the pattern: “Lihong” > “Yangfeichuyu” > “Taohuafeixue” > “Dafugui” > “Qihualushuang” > “Hongxiuqiu”. It is suggested <span>that the variety “Lihong” and “Yangfeichuyu”, with strong comprehensive wa</span>terlogging tolerance, can be selected for propagation and cultivation in areas prone to waterlogging. In the later stage, it is still necessary to further expand the number and scale of varieties, combined with the in-depth study of wa<span>terlogging-resistance genes, so as to provide a theoretical reference for the cu</span>ltivation and production of new waterlogging-resistant varieties.展开更多
Cerium dioxide(CeO_(2))photocatalysts are used in treating environmental pollution and addressing the energy crisis due to their excellent oxygen storage capacities and abundant oxygen vacancies.In this paper,CeO_(2)p...Cerium dioxide(CeO_(2))photocatalysts are used in treating environmental pollution and addressing the energy crisis due to their excellent oxygen storage capacities and abundant oxygen vacancies.In this paper,CeO_(2)precursors were synthesized with different water-alcohol ratios via a solvothermal method,and CeO_(2)photocatalysts with different Ce^(3+)/Ce^(4+)ratios were obtained by changing the precursor calcination atmospheres(air,Ar)as well as the calcination time.The effects of CeO_(2)with different Ce^(3+)/Ce^(4+)ratios in photocatalytic degradations of methylene blue under visible light were investigated.X-ray photoelectron spectroscopy results showed that the surfaces of the samples calcined under Ar had higher Ce^(3+)/Ce^(4+)ratios and oxygen vacancy concentrations,which reduced the band gaps of the catalysts and improved their utilization of visible light.In addition,the many Ce^(3+)/Ce^(4+)redox centers and oxygen vacancies on the sample surfaces improved the separation and transfer efficiencies of the photogenerated carriers.The sample C2-Ar calcined under Ar showed a high adsorption capacity and excellent photocatalytic activity by removing 96%of the methylene blue within 120 min,which was more than twice the degradation rate of the sample(C2-air)prepared via calcination under air.Trapping experiments showed that photogenerated holes played a key role in the photocatalytic process.In addition,a synergistic photocatalytic mechanism for the Ce^(3+)/Ce^(4+)redox centers and oxygen vacancies was elucidated in detail,and the sensitization of cerium dioxide by dyes aided the degradation of methylene blue.展开更多
Apparent viscosity is an important parameter for glucose syrup production.which is greatly affected by particle size and concentration of samples.In order to analyze the factors influencing the apparent viscosity,the ...Apparent viscosity is an important parameter for glucose syrup production.which is greatly affected by particle size and concentration of samples.In order to analyze the factors influencing the apparent viscosity,the particle size distribution,steady shear flow behavior,temperature,and time sweep test of native degerminated maize grits(NDMG),extruded degerminated maize grits(EDMG),and enzymatically extruded degerminated maize grits(EEDMG)with different particle sizes(passed through 20,40,60,80,and 100 mesh sieves)and concentrations(water-sample ratios:2:1,3:1,5:1,10:1,and 20:1)were investigated.All samples passed through different mesh sieves showed a gradient and a relatively concentrated distribution,and slurries had typical shear-thinning properties.Apparent viscosity increased with increasing particle size and concentration.The lowest apparent viscosity was attained from the samples obtained at 100+mesh and 20:1 water-sample ratio.Moreover,the sample with a 20:1 water-sample ratio showed the most stable apparent viscosity in the temperature sweep test.In the time sweep test,the power law equation with high determination coefficients(R^(2)=0.9446,0.9382)and low root mean square error(RMSE=0.0002)had the best fit to the experimental data of the EDMG and EEDMG samples passed through 100+mesh.Overall,the lower apparent viscosities of the EDMG and EEDMG samples obtained at 100+mesh and 20:1 water-sample ratio can improve the activity and accessibility of enzymes for glucose syrup production.This study provides critical insight into decreased apparent viscosity and expands the uses of EDMG and EEDMG in the glucose syrup sector.展开更多
Increased penetration of wind energy in the electric grid has necessitated studying the impact of wind integration on the transient stability of the power system,with urgency to develop appropriate electromechanical m...Increased penetration of wind energy in the electric grid has necessitated studying the impact of wind integration on the transient stability of the power system,with urgency to develop appropriate electromechanical models of the wind turbine generator(WTG).The representation and control of the WTG’s electric signals are typically in a rotational dq coordinate system whose reference angle is provided by a phase-lockedloop(PLL).The PLL is commonly considered as a measurement device and is often absent in existing WTG electromechanical models.This paper studies the impact of PLL on the DFIG-based WTG electromechanical response by theoretical and simulation analyses.The dynamics of the PLL are found to greatly influence the WTG electromechanical response,suggesting that PLL should be regarded as an indispensable control loop rather than a measurement device,and its impact should be modeled when establishing the WTG electromechanical model.展开更多
The mechanism of phthalic acid,a dicarboxylic acid collector,in flotation separation of fluorite and rare earth(RE)was studied in this paper.The experimental data of flotation show that phthalic acid,as the collector,...The mechanism of phthalic acid,a dicarboxylic acid collector,in flotation separation of fluorite and rare earth(RE)was studied in this paper.The experimental data of flotation show that phthalic acid,as the collector,can realize highly efficient separation of fluorite and rare earth under weakly acidic conditions.The adsorption mechanism of phthalic acid on the surface of fluorite and bastnaesite was analyzed in this paper by means of the zeta potential measurement,the Fourier transform infrared(FT-IR),the X-ray photoelectron spectroscopy(XPS)and the stability constant measurement of active metal ion and phthalic acid coo rdination complex.According to the zeta potential testing results,the surfaces of fluorite adsorb the collector phthalate ion with negative charge under weakly acidic conditions which,in turn,increases its electronegativity and results in the motion of its potential.After the reaction between phthalic acid and fluorite ores under weakly acidic conditions,the peak of the fluorite ores is found to have significant changes in the FT-IR results,indicating strong chemical adsorption on the surfaces of phthalic acid and fluorite ores.According to the XPS analysis,the peak of benzene ring of phthalic acid is as high as 2%on the surface of fluorite,while no obvious characteristic peak of benzene ring is found on the surface of bastnaesite.According to the pH potentiometric titration results,the stability constant Ktotal of calcium phthalate complex within the acid range is higher than the stability constant K’total of cerium phthalate complex,indicating that the complex generated between phthalic acid and Ca^(2+)is more stable than the complex generated between phthalic acid and Ce^(3+).The possible reason is that Ca^(2+),with the highest reticular density,plays a prevailing role in the octahedron structure of fluorite amidst the acidic media.As the active point of flotation,Ca^(2+)works with the carboxyl groups of the collector phthalic acid(-C=O-)to form polycyclic calcium phthalate complex.展开更多
The deposit of Bayan Obo in Inner Mongolia is the world’s largest rare earth element(abbreviated as REE)resource.The exploration of the theory of mineral formation of Bayan Obo is an important foundation for mineralo...The deposit of Bayan Obo in Inner Mongolia is the world’s largest rare earth element(abbreviated as REE)resource.The exploration of the theory of mineral formation of Bayan Obo is an important foundation for mineralogical research,and is the scientific basis for mining,industrial beneficiation,smelting and extraction,and processing and utilization.With the rapid development of science and technology,the demand for the utilization of rare earth elements is increasing,and the separation process between rare earth elements needs to be developed.The purpose of this paper is to provide high temperature experimental information for the formation and application of rare earth minerals.To this end,the mineral evolution of high-grade rare earth concentrates with increasing temperature and the migration of rare earths at different stages and their reaction mechanisms were studied.According to thermogravimetric analysis and differential scanning calorimetry(TG-DSC),calcination was carried out at different temperature ranges,and the calcined products were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scanning electron micro scope and energy dispers ive spectrometer(SEM-EDS)and other analytical techniques.The re sults are shown in this process,the ra re earth phase is first converted into rare earth oxide and rare earth oxyfluoride.As the temperature increases,Ca5(PO4)3 F and a large number of self-shaped spherical Ca-RE-OF and Ca-RE-PO4 particles are formed,and the separation of La and Ce elements is discovered.Acco rding to the phase diagram analysis,the production of Ca5(PO4)3 F is due to the reaction of monazite and fluorite,and the phases CeF2 and Ce F3 are formed during the reaction.When it reaches 1500℃,barium ferrite is produced and a new substance containing Ba2+is formed.展开更多
A new clean extraction technology for the decomposition of Bayan Obo mixed rare earth concentrate by NaOH roasting is proposed.The process mainly includes NaOH roasting to decompose rare earth concentrate and HCl leac...A new clean extraction technology for the decomposition of Bayan Obo mixed rare earth concentrate by NaOH roasting is proposed.The process mainly includes NaOH roasting to decompose rare earth concentrate and HCl leaching roasted ore.The effects of roasting temperature,roasting time,NaOH addition amount on the extraction of rare earth and factors such as HCl concentration,liquid-solid ratio,leaching temperature and leaching time on the dissolution kinetics of roasted ore were studied.The experimental results show that when the roasting temperature is 550℃and the roasting time is 60 min,the mass ratio of NaOH:rare earth concentrate is 0.60:1,the concentration of HCl is 6.0 mol/L,the ratio of liquid to solid(L/S)6.0:1.0,and the leaching temperature 90℃,leaching time 45 min,stirring speed 200 r/min,and the extraction of rare earth can reach 92.5%.The relevant experimental data show that the process of HCl leaching roasted ore conforms to the shrinking core model,but the control mechanism of the che mical reaction process is different when the leaching temperature is different.When the leaching temperature is between 40 and 70℃,the chemical reaction process is controlled by the diffusion of the product through the residual layer of the inert material.The average surface activation energy of the rare earth element is E_a=9.96 kJ/mol.When the leaching temperature is 75-90℃,the chemical reaction process is controlled by the interface transfer across the product layer(product layer interface mass transfer)and diffusion.The average surface activation energy of rare earth elements is E_a=41.65 kJ/mol.The results of this study have certain significance for the green extraction of mixed rare earth ore.展开更多
The influence of temperature on the complex process of Bayan Obo rare earth (RE) ore flotation with a collector of naphthyl hydroxamic acid (LF8#) was investigated. Industrial test data shows that the grade and re...The influence of temperature on the complex process of Bayan Obo rare earth (RE) ore flotation with a collector of naphthyl hydroxamic acid (LF8#) was investigated. Industrial test data shows that the grade and recovery of RE increase with the temperature. However, the proportion of bastnaesite in the bulk concentrate increases as the RE grade improves. Adsorption mechanism of LF8# on the surfaces of bastnaesite and monazite were confirmed via zeta potential, UV]Vis Spectrophotometer (UV]Vis), Fourier transform infrared (FIR), and X-ray photoelectron spectroscopy analyses (XPS). Although the results indicate that the total amount of the LF8# adsorption on the surface of bastnaesite and monazite de- creases with increasing the temperature, the amount of stable adsorbed predominance of characteristic bonds (-C(~O)N-] from LF8# uptake on bastnaesite surfaces increases significantly at high tempera- tures. This conclusion indicates that the adsorption stability increases with increasing the temperature. For monazite, the amount of characteristic elements C and N in LF8# does not increase as the temper- ature increases on the mineral surface, but the proportion of characteristic bonds increases, which shows that the adsorption stability of LF8# on the surface of monazite also increases, but it is not as significant as bastnaesite, which may be one of the reasons that the floatability of bastnaesite is better than those of monazite. Pulp dispersion results show that the temperature improve the dispersions of both the gangue and RE minerals. This improved the flotation selectivity so that it favored RE minerals. The calculated bubble size distribution confirms that higher temperatures generate smaller bubbles, thereby increasing the bubble-particle collision probability and the recovery of RE minerals.展开更多
There is an increasing demand of using the low-cost and sustainable cobalt to replace its noble congeners(rhodium and iridium)as reflected by the recent upsurge of cobalt catalysis in the diverse organic transformatio...There is an increasing demand of using the low-cost and sustainable cobalt to replace its noble congeners(rhodium and iridium)as reflected by the recent upsurge of cobalt catalysis in the diverse organic transformations.Since all the redox reactivity of cobalt catalysis highly relies on the capability of the interconversion between their oxidation states(most frequently+1,+2 and+3),electrochemistry perfectly meets such a require ment owing to its outstanding perfo rmance in the redox manipulation.In this review,we highlight the recent advances in the merger of cobalt catalysis and electrochemistry in organic synthesis.展开更多
During last two decades,transition-metal catalyzed asymmetric reactions under continuous flow system have attracted a widespread attention.With its prominent advantages including higher safety and efficiency,precise c...During last two decades,transition-metal catalyzed asymmetric reactions under continuous flow system have attracted a widespread attention.With its prominent advantages including higher safety and efficiency,precise control,better heat/mass transfer,easier scale-up and better sustainability,it has impressed both the academia and related industries.However,comparing with the prosperous development of transition-metal catalyzed asymmetric reactions in batch,utilization of this type of chemistry under continuous flow is still at an early stage.To inspire more potential industrial application and further studies of this chemistry in flow,this review sum-marized the recent advances of transition-metal catalyzed asymmetric reactions under continuous flow.Moreover,we further discussed the encountered challenges including reactor engineering,catalyst design,catalyst deacti-vation,pressure drop,clogging,side reactions etc.,as well as their corresponding solutions and achievements in this mini-review.展开更多
A unique Pd&Cu@Al catalyst was easily fabricated just by immersing commercial aluminum foil in a mixed xylene solution of PdC12 and CuCl2. The catalyst fabrication process led to aluminum oxide coatings in situ, whic...A unique Pd&Cu@Al catalyst was easily fabricated just by immersing commercial aluminum foil in a mixed xylene solution of PdC12 and CuCl2. The catalyst fabrication process led to aluminum oxide coatings in situ, which supported the metal nanoparticles and enhanced their catalytic activities for the phosphine-free Heck reaction of awl halides and styrenes with high turnover number (TON) up to 3.9×10^5. The reaction can be scaled up to at least 100 mmol and has been applied in modification of drug Lapatinib's intermediate with low metal residue. This novel catalyst is of good application potential in industrial production because it was extremely easy to be recycled, in regardless of the generation of the insoluble impurities or tars during the reaction processes.展开更多
To explore the improving effect of Y_(2)O_(3)on the water resistance of xY_(2)O_(3)-(100-x)(0.05 Al_(2)O_(3)-0.15 ZnO-0.15 Na_(2)O-0.65 B_(2)O_(3))(x=0,0.7 mol%,1.4 mol%,2.1 mol%,2.8 mol%)glasses,glass structure and i...To explore the improving effect of Y_(2)O_(3)on the water resistance of xY_(2)O_(3)-(100-x)(0.05 Al_(2)O_(3)-0.15 ZnO-0.15 Na_(2)O-0.65 B_(2)O_(3))(x=0,0.7 mol%,1.4 mol%,2.1 mol%,2.8 mol%)glasses,glass structure and ion migration characteristics were respectively characterized by an infrared spectrometer and an electrochemical workstation.X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive Xray spectroscopy(EDS)and inductively coupled plasm-atomic emission spectrometry(ICP-AES)were used to comprehensively analyze the alteration products.The experimental results show that with the increase of Y_(2)O_(3)content,the mass loss per unit area of the glass is significantly reduced,and pH in leaching solution has the same change trend with mass loss of the glass,which indicates the improving effect of Y_(2)O_(3)addition on the studied glass.The content of[BO_(4)]structural unit and dc conductivity of glass increase firstly and then decrease with the increase of Y_(2)O_(3)content,and reach a maximum at x=0.7 mol%.Although addition of Y_(2)O_(3)plays the role in the changes of glass structure and ion migration characteristics,the more important influence of Y_(2)O_(3)is on the glass surface alteration layer.Y and Zn elements are enriched on the glass surface and finally transformed into an alteration layer,moreover,the adhesion between the alteration layers and the glass matrix is enhanced with the increase of Y_(2)O_(3)content,which effectively blocks the further interdiffusion between the water molecules and the glass matrix.展开更多
Over the past 2000 years,a high-resolution pollen record from the Yushenkule Peat(46°45′-46°57′N,90°46′-90°61′E,2374 m a.s.l.)in the south-eastern Altai Mountains of northwestern China has been...Over the past 2000 years,a high-resolution pollen record from the Yushenkule Peat(46°45′-46°57′N,90°46′-90°61′E,2374 m a.s.l.)in the south-eastern Altai Mountains of northwestern China has been used to explore the changes in vegetation and climate.The regional vegetation has been dominated by alpine meadows revealed from pollen diagrams over the past 2000 years.The pollen-based climate was warm and wet during the Roman Warm Period(0-520 AD),cold and wet during the Dark Age Cold Period(520-900 AD),warm and wet during the Medieval Warm Period(900-1300 AD),and cold and dry during the Little Ice Age(1300-1850 AD).Combined with other pollen data from the Altai Mountains,we found that the percentage of arboreal pollen showed a reduced trend along the NW-SE gradient with decreasing moisture and increasing climatic continentality of the Altai Mountains over the past 2000 years;this is consistent with modern distributions of taiga forests.We also found that the taiga(Pinus forest)have spread slightly,while the steppe(Artemisia,Poaceae and Chenopodiaceae)have recovered significantly in the Altai Mountains over the past 2000 years.In addition,the relatively warm-wet climate may promote high grassland productivity and southward expansion of steppe,which favors the formation of Mongol political and military power.展开更多
Objective:The purpose of the current study was to determine the influence of a 1.75 mmol/L calcium(Ca)concentration dialysate(DCa 1.75)during maintenance hemodialysis(MHD)therapy for patients with chronic kidney disea...Objective:The purpose of the current study was to determine the influence of a 1.75 mmol/L calcium(Ca)concentration dialysate(DCa 1.75)during maintenance hemodialysis(MHD)therapy for patients with chronic kidney disease,mineral,and bone disorders(CKD-MBD)on biochemical indices and clinical prognosis.Methods:Four hundred eighty-three MHD patients from three hemodialysis centers were en-rolled.During 24 months of follow-up(January 2011 to December 2012),289 patients from Center 1 who used 1.50 mmol/L Ca concentration dialysate(Dca 1.50)between January and December 2011 and DCa 1.75 between January and December 2012 were included in the high Ca group.The remaining 194 patients from the other centers who used DCa 1.50 for hemodialysis between January 2011 and December 2012 were included in the ordinary Ca group.The following CKD-MBD biochemical indices were monitored:blood Ca;blood phosphorus(P);intact parathyroid hormone(iPTH);and bone-specific alkaline phosphatase(BAP).The metastatic calcification index included calcification of aortic arch scoring(AoACS),abdominal aorta calcification(AAC),and cardiac valve calcification(CVC).The study end points included all-cause mortality(ACM),car-diovascular and cerebrovascular diseases(CCVDs),fractures,and new metastatic calcifications.The changes between the two groups in the observed indices were compared.Results:Two hundred eighty-four patients in the high Ca group(98.3%)and 194 patients in the ordinary Ca group(100.0%)completed an average follow-up of 21.3±5.6 months.After DCa 1.75 was used,the blood Ca in the high Ca group increased[(2.39±0.22)mmol/L vs.(2.34±0.21)mmol/L,t=-2.910,P=0.004]compared to the previous year,and increased[(2.39±0.22)mmol/L vs.(2.30±0.16)mmol/L,t=5.187,P<0.001]compared to the ordinary Ca group in the same year.The blood P and iPTH decreased[(1.78±0.39)mmol/L vs.(1.89±0.42)mmol/L,t=2.909,P=0.004 and(306.5±298.6)pg/ml vs.(425.7±365.1)pg/ml,t=8.377,P<0.001,respectively]compared with the previous year,and decreased[(1.78±0.39)mmol/L vs(1.86±0.39)mmol/L,t=-2.016,P=0.044 and(306.5±298.6)pg/ml vs.(366.6±341.0)pg/ml,t=-2.113,P=0.035,respectively]compared with the ordinary Ca group in the same year.There was no difference in AoACS between the two groups before and after the change in DCa in the high Ca group(P>0.05).In 2011,there was 13 CCVDs,2 fractures,and 13 new metastatic calcifications in the ordinary Ca group compared to 8 CCVDs,3 fractures,and 16 new metastatic calcifications in the high Ca group;there were no statistically significant differences in the incidence of end point events between the two groups(χ^(2)=2.747,P=0.098).In 2012,the values for the ordinary Ca group were 13,2,and 15,respec-tively,while the values for the high Ca group were 8,1,and 19,respectively,which indicated a statistically significant difference in the incidence of end point events between the two groups(χ^(2)=4.391,P=0.036).Conclusion:Short-term use of DCa 1.75 significantly reduced the blood P and iPTH levels in MHD patients,significantly increased the blood Ca level,did not increase the proportion of new cardiovascular calcifications,and decreased the overall inci-dence of end point events.展开更多
基金supported by grants from the National Natural Science Foundation of China(Grant No.31670663).
文摘The herbaceous peony(Paeonia lactiflora Pall.)has high ornamental value.Replanting problems occur when seedlings are replanted into previous holes.We studied the root system and soil environment of the'Dongjingnvlang'variety under a continuous planting regime of one,four,and seven years,and a replanting regime of one and four years.Under the condition of continuous planting,with the increase of number of years,pH,ammonium nitrogen,and nitrate nitrogen decreased in the rhizosphere and non-rhizosphere soils,whereas organic matter,available phosphorus and potassium,enzyme activities,and the number of bacteria,fungi,and actinomycetes increased.Under the condition of replanting,with the increase of number of years,fungi and actinomycetes in both soils increased,while pH,organic matter,nutrients,enzyme activities,and bacterial number decreased.pH,organic matter,nutrient content,enzyme activity and the number of bacterial were lower in soil replanted for four years,whereas the abundance of fungi and actinomycetes was higher,altering the soil from“bacterial high-fertility”to“fungal low-fertility”with increasing years of replanting.The activity of antioxidant enzymes and MDA content in roots of peony in replanting were higher than those in continuous planting,while the content of osmotic regulatory substances in replanting was lower than that in continuous planting.The results showed that there were no obvious adverse factors in soil during seven years of continuous planting,and herbaceous peony could maintain normal growth and development.However,soils after four years of replanting were not suitable for herbaceous peony growth.Benzoic acid increased with years of replanting,which potentially caused replanting problems.This study provides a theoretical basis for understanding the mechanism of replanting problems in the herbaceous peony.
文摘A hill can be regarded as an environmental carrier of heat.Water,rocks and the internal moisture naturally pre-sent in such environment constitute a natural heat accumulator.In the present study,the heat and moisture trans-fer characteristics in a representative hill cave have been simulated via a method relying on the Darcy’s law.The simulations have been conducted for both steady and unsteady conditions to discern the influence of permeability and geometric parameters on the thermal and moisture transfer processes.The reliability of the simulation has been verified through comparison of the numerical results with the annual observation data.As revealed by the numericalfindings,the internal temperature of the hill accumulator is proportional to the permeability,outside surface temperature,overground height,underground constant temperature layer depth,and underground tem-perature of the hill,and it is inversely proportional to the horizontal size of the hill.Moreover,in the considered case,the order of magnitude of the permeability of the hill is contained in the range 10-15–10-13,and displays a certain sensitivity to the rainwater seepage.
基金funded by the Project Funded by China Postdoctoral Science Foundation(No.2022T150445)the Beijing Hospitals Authority Youth Programme(No.QML20211401)+1 种基金the Young Talent Foundation of PLA General Hospital(2019-YQPY-002)Beijing Nova Program(Z201100006820057).
文摘Receptor tyrosine kinase-like orphan receptor 2(ROR2)has a vital role in osteogenesis.However,the mechanism underlying the regulation of ROR2 in osteogenic differentiation is still poorly comprehended.A previous study by our research group showed that a novel compound heterozygous ROR2 variation accounted for the autosomal recessive Robinow syndrome(ARRS).This study attempted to explore the impact of the ROR2:c.904C>T variant specifically on the osteogenic differentiation of BMSCs.Methods:Coimmunoprecipitation(CoIP)-western blotting was carried out to identify the interaction between ROR2 and Wnt5a.Double-immunofluorescence staining was used for determining the expressions and co-localization of ROR2 and Wnt5a in bone marrow mesenchymal stem cells(BMSCs).Western blot(WB)analysis and quantitative reverse transcription polymerase chain reaction(RT-qPCR)were conducted to identify the expression levels of ROR2 in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T.The alkaline phosphatase(ALP)activity was detected,and Alizarin Red S staining was done for evaluating the osteogenic differentiation of BMSCs.RT-qPCR was employed to identify the expression of the sphingomyelin synthase 1(SMS1)mRNA in the BMSCs transfected with LV-shROR2 or LV-ROR2-c.904C>T and the mRNA expression levels of Runt-related transcription factor 2(RUNX2),osteocalcin(OCN),and osteopontin(OPN).WB was performed to confirm the protein expressions of extracellular regulated protein kinases1(ERK),P-ERK,Smad family member1/5/8(Smad1/5/8),P-Smad1/5/8,P-P38,P38,RUNX2,OCN,and OPN in the BMSCs transfected with LV-shROR2/LV-ROR2-c.904C>T and sphingomyelin(SM).Results:The ROR2:c.904C>T mutant altered the subcellular localization of the ROR2 protein,which caused an impaired interaction between ROR2 and Wnt5a.The depletion of ROR2 restricted the osteogenic differentiation capability of BMSCs and downregulated the expression of SMS1.SM treatment could reverse the inhibition of osteoblastic differentiation in ROR2-depleted BMSCs.Conclusion:The findings of this work revealed that the ROR2:c.904C>T variant led to the loss of function of ROR2,which impaired the interaction between ROR2 and Wnt5a and also controlled the osteogenic differentiation capability of BMSCs.Furthermore,SM was revealed to be engaged in the osteoblastic differentiation of BMSCs regulated by ROR2,which renders SM a potential target in the therapy for ARRS.
文摘Herbaceous peony is an ornamental plant with medicinal properties. Waterlogging can affect its yield and quality as it grows and matures. In this study, we subjected “Taohuafeixue”, “Yangfeichuyu” and “Hongxiuqiu” herbaceous peony varieties to a simulated waterlogging stress treatment and investigated the effects of waterlogging on their physiological characteristics and the secondary metabolite contents in their leaves and roots. Short-term waterlogging caused the leaves to turn yellow or red and the roots to turn black. The stele and the cell wall of the endothelial cells thickened, and the cortical cells enlarged. Waterlogging did not significantly change plant height, leaf length, <span style="font-family:Verdana;">and leaf area;however, it significantly decreased the root-shoot ratio of</span><span style="font-family:Verdana;"> “Yang</span><span style="font-family:Verdana;">feichuyu” and “Hongxiuqiu” varieties. The activity of antioxidant enzymes</span><span style="font-family:Verdana;"> and the content of osmotic regulators increased under waterlogging. After short-</span><span style="font-family:Verdana;">term waterlogging stress treatment, the content of paeoniflorin and albiflorin increased in the roots of “Taohuafeixue” and “Yangfeichuyu”, and the content of benzoylpaeoniflorin increased in the root of “Hongxiuqiu”</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The content of gallic acid and total flavonoids increased in the leaves of “Taohuafeixue” and “Yangfeichuyu”. After the waterlogging, paeoniflorin and benzoylpaeoniflorin increased in the </span><span style="font-family:Verdana;">autumn root of “Hongxiuqiu”.</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">This study expands our knowledge about the medicinal properties of herbaceous peony and informs about its production and cultivation under waterlogged conditions.</span>
文摘<i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:""><span style="font-family:Verdana;"> Pall. var. </span><i><span style="font-family:Verdana;">trichocarpa </span></i><span style="font-family:Verdana;">is a variety of </span><i><span style="font-family:Verdana;">Paeonia lactiflora</span></i><span style="font-family:Verdana;"> Pall., and is currently the peony herb</span></span><span style="font-family:Verdana;">’</span><span style="font-family:""><span style="font-family:Verdana;">s principal cultivar group. Here, we study the differences in aromatic components and flowers of different varieties between two groups of cultivars, providing a reference for applying natural fragrance substances of peonies, breeding fragrant flower types, and developing and </span><span style="font-family:Verdana;">using improved varieties. Headspace solid-phase microextraction (HS-SPME),</span> <span style="font-family:Verdana;">gas chromatography-mass spectrometry (GC-MS), peak area normalization for</span><span style="font-family:Verdana;"> each component relative to content, component library (NIST14/NIST14S) retrieval, and a literature review were used to analyze the volatile compounds in flowers of eight peony varieties, such as </span></span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Gaoganhong</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;">, and ten comospore peony varieties, such as </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Jinshanhong</span><span style="font-family:Verdana;">”</span><span style="font-family:""><span style="font-family:Verdana;">. Results showed that the main volatile compound constituents in flowers of the two groups were terpenes and alcohols. Additionally, the content of eucalyptol, caryophyllene, α-Pinene, citronellol, and 3-Hexen-1-ol, acetate, (Z) was high. Peony cultivars contained linalool,</span><span style="font-family:Verdana;"> (1R)-2,6,6-trimethylbicyclo[3.1.1]hept-2-ene, and 1,4-dimethoxybenzene,</span><span style="font-family:Verdana;"> while comospore peony varieties contained 1,3,6-octatriene, 3,7-dimethyl-, (Z)-, phenylethyl alcohol, and geraniol. In this study, the differences between the volatile components of flowers of different peony varieties were clarified, laying a foundation for further molecular biology research into the floral fragrance of peonies and the cultivation of new varieties of aromatic peonies. At the same time, it also provides a theoretical basis for the development and application of peony flower by-products.
文摘The root of herbaceous peony (<i>Paeonia lactiflora</i> Pall.) is fleshy, and different varieties have different tolerance to waterlogging stress. In order to explore its response and recovery characteristics to waterlogging stress, six varieties of herbaceous peony with strong, medium and weak waterlogging tolerance and high ornamental value were selected as experimental materials. After the vegetative growth of each variety was completed, the field simulated waterlogging stress experiment was carried out by the semi-flooded (the water surface is half the height of the flowerpot) pot method. Changes in photosynthetic p<span>arameters, chlorophyll fluorescence parameters, relative water content (R</span>WC), relative conductivity (REC), chlorophyll content, lutein cycle, and leaf microstructure were analyzed during recovery from waterlogging stress and stress relief. The results showed that the time of reaching the most significant difference between CK and tested varieties was different. From the beginning of <span>stress to 60% of the leaves with symptoms, the varieties with strong and m</span>oderate waterlogging tolerance experienced longer time;the proportion of palisade tissue in leaves was larger;the maximum photochemical quantum yield (Fv/Fm) was reduced less;it could increase xanthophyll cycle and heat dissi<span>pation (NPQ) to consume excess light energy, and maintain a higher net ph</span>otosynthetic rate (Pn) for normal growth of plants in a short period of time. The REC in leaves of varieties with weak waterlogging tolerance increased more, and the damage of cell membrane was more serious. After the stress was removed, all indexes recovered to different degrees. Based on our comprehensive analysis, the comprehensive waterlogging resistance of the experimental materials followed the pattern: “Lihong” > “Yangfeichuyu” > “Taohuafeixue” > “Dafugui” > “Qihualushuang” > “Hongxiuqiu”. It is suggested <span>that the variety “Lihong” and “Yangfeichuyu”, with strong comprehensive wa</span>terlogging tolerance, can be selected for propagation and cultivation in areas prone to waterlogging. In the later stage, it is still necessary to further expand the number and scale of varieties, combined with the in-depth study of wa<span>terlogging-resistance genes, so as to provide a theoretical reference for the cu</span>ltivation and production of new waterlogging-resistant varieties.
基金supported by National Natural Science Foundation of China(Grant No.51974168)Science and Technology Major Project Inner Mongolia Autonomous Region in China(Grant Nos.2019ZD023 and 2021ZD0028)State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(Grant No.SYSJJ2020-08).
文摘Cerium dioxide(CeO_(2))photocatalysts are used in treating environmental pollution and addressing the energy crisis due to their excellent oxygen storage capacities and abundant oxygen vacancies.In this paper,CeO_(2)precursors were synthesized with different water-alcohol ratios via a solvothermal method,and CeO_(2)photocatalysts with different Ce^(3+)/Ce^(4+)ratios were obtained by changing the precursor calcination atmospheres(air,Ar)as well as the calcination time.The effects of CeO_(2)with different Ce^(3+)/Ce^(4+)ratios in photocatalytic degradations of methylene blue under visible light were investigated.X-ray photoelectron spectroscopy results showed that the surfaces of the samples calcined under Ar had higher Ce^(3+)/Ce^(4+)ratios and oxygen vacancy concentrations,which reduced the band gaps of the catalysts and improved their utilization of visible light.In addition,the many Ce^(3+)/Ce^(4+)redox centers and oxygen vacancies on the sample surfaces improved the separation and transfer efficiencies of the photogenerated carriers.The sample C2-Ar calcined under Ar showed a high adsorption capacity and excellent photocatalytic activity by removing 96%of the methylene blue within 120 min,which was more than twice the degradation rate of the sample(C2-air)prepared via calcination under air.Trapping experiments showed that photogenerated holes played a key role in the photocatalytic process.In addition,a synergistic photocatalytic mechanism for the Ce^(3+)/Ce^(4+)redox centers and oxygen vacancies was elucidated in detail,and the sensitization of cerium dioxide by dyes aided the degradation of methylene blue.
基金funded by the National Natural Science Foundation of China(Project No.31471676)the National Key Research and Development Plan Sub-Topic(Project No.2016YFD040130301).
文摘Apparent viscosity is an important parameter for glucose syrup production.which is greatly affected by particle size and concentration of samples.In order to analyze the factors influencing the apparent viscosity,the particle size distribution,steady shear flow behavior,temperature,and time sweep test of native degerminated maize grits(NDMG),extruded degerminated maize grits(EDMG),and enzymatically extruded degerminated maize grits(EEDMG)with different particle sizes(passed through 20,40,60,80,and 100 mesh sieves)and concentrations(water-sample ratios:2:1,3:1,5:1,10:1,and 20:1)were investigated.All samples passed through different mesh sieves showed a gradient and a relatively concentrated distribution,and slurries had typical shear-thinning properties.Apparent viscosity increased with increasing particle size and concentration.The lowest apparent viscosity was attained from the samples obtained at 100+mesh and 20:1 water-sample ratio.Moreover,the sample with a 20:1 water-sample ratio showed the most stable apparent viscosity in the temperature sweep test.In the time sweep test,the power law equation with high determination coefficients(R^(2)=0.9446,0.9382)and low root mean square error(RMSE=0.0002)had the best fit to the experimental data of the EDMG and EEDMG samples passed through 100+mesh.Overall,the lower apparent viscosities of the EDMG and EEDMG samples obtained at 100+mesh and 20:1 water-sample ratio can improve the activity and accessibility of enzymes for glucose syrup production.This study provides critical insight into decreased apparent viscosity and expands the uses of EDMG and EEDMG in the glucose syrup sector.
基金supported by Science and Technology Program of State Grid Corporation of China under Grant XT71-14-051.
文摘Increased penetration of wind energy in the electric grid has necessitated studying the impact of wind integration on the transient stability of the power system,with urgency to develop appropriate electromechanical models of the wind turbine generator(WTG).The representation and control of the WTG’s electric signals are typically in a rotational dq coordinate system whose reference angle is provided by a phase-lockedloop(PLL).The PLL is commonly considered as a measurement device and is often absent in existing WTG electromechanical models.This paper studies the impact of PLL on the DFIG-based WTG electromechanical response by theoretical and simulation analyses.The dynamics of the PLL are found to greatly influence the WTG electromechanical response,suggesting that PLL should be regarded as an indispensable control loop rather than a measurement device,and its impact should be modeled when establishing the WTG electromechanical model.
基金Project supported by the National Natural Science Foundation of China(51634005,51564042)Inner Mongolia Autonomous Region Natural Science Foundation(2014ZD04.2016ZD05)。
文摘The mechanism of phthalic acid,a dicarboxylic acid collector,in flotation separation of fluorite and rare earth(RE)was studied in this paper.The experimental data of flotation show that phthalic acid,as the collector,can realize highly efficient separation of fluorite and rare earth under weakly acidic conditions.The adsorption mechanism of phthalic acid on the surface of fluorite and bastnaesite was analyzed in this paper by means of the zeta potential measurement,the Fourier transform infrared(FT-IR),the X-ray photoelectron spectroscopy(XPS)and the stability constant measurement of active metal ion and phthalic acid coo rdination complex.According to the zeta potential testing results,the surfaces of fluorite adsorb the collector phthalate ion with negative charge under weakly acidic conditions which,in turn,increases its electronegativity and results in the motion of its potential.After the reaction between phthalic acid and fluorite ores under weakly acidic conditions,the peak of the fluorite ores is found to have significant changes in the FT-IR results,indicating strong chemical adsorption on the surfaces of phthalic acid and fluorite ores.According to the XPS analysis,the peak of benzene ring of phthalic acid is as high as 2%on the surface of fluorite,while no obvious characteristic peak of benzene ring is found on the surface of bastnaesite.According to the pH potentiometric titration results,the stability constant Ktotal of calcium phthalate complex within the acid range is higher than the stability constant K’total of cerium phthalate complex,indicating that the complex generated between phthalic acid and Ca^(2+)is more stable than the complex generated between phthalic acid and Ce^(3+).The possible reason is that Ca^(2+),with the highest reticular density,plays a prevailing role in the octahedron structure of fluorite amidst the acidic media.As the active point of flotation,Ca^(2+)works with the carboxyl groups of the collector phthalic acid(-C=O-)to form polycyclic calcium phthalate complex.
基金Project supported by the key program of the National Natural Science Foundation of China (5163400551564042)+1 种基金Inner Mongolia Autonomous Region Natural Science Foundation (2014ZD042016ZD05)。
文摘The deposit of Bayan Obo in Inner Mongolia is the world’s largest rare earth element(abbreviated as REE)resource.The exploration of the theory of mineral formation of Bayan Obo is an important foundation for mineralogical research,and is the scientific basis for mining,industrial beneficiation,smelting and extraction,and processing and utilization.With the rapid development of science and technology,the demand for the utilization of rare earth elements is increasing,and the separation process between rare earth elements needs to be developed.The purpose of this paper is to provide high temperature experimental information for the formation and application of rare earth minerals.To this end,the mineral evolution of high-grade rare earth concentrates with increasing temperature and the migration of rare earths at different stages and their reaction mechanisms were studied.According to thermogravimetric analysis and differential scanning calorimetry(TG-DSC),calcination was carried out at different temperature ranges,and the calcined products were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),scanning electron micro scope and energy dispers ive spectrometer(SEM-EDS)and other analytical techniques.The re sults are shown in this process,the ra re earth phase is first converted into rare earth oxide and rare earth oxyfluoride.As the temperature increases,Ca5(PO4)3 F and a large number of self-shaped spherical Ca-RE-OF and Ca-RE-PO4 particles are formed,and the separation of La and Ce elements is discovered.Acco rding to the phase diagram analysis,the production of Ca5(PO4)3 F is due to the reaction of monazite and fluorite,and the phases CeF2 and Ce F3 are formed during the reaction.When it reaches 1500℃,barium ferrite is produced and a new substance containing Ba2+is formed.
基金Project supported by the National Natural Science Foundation of China(51634005,51564042)Inner Mongolia Autonomous Region Natural Science Foundation(2014ZD04,2016ZD05)。
文摘A new clean extraction technology for the decomposition of Bayan Obo mixed rare earth concentrate by NaOH roasting is proposed.The process mainly includes NaOH roasting to decompose rare earth concentrate and HCl leaching roasted ore.The effects of roasting temperature,roasting time,NaOH addition amount on the extraction of rare earth and factors such as HCl concentration,liquid-solid ratio,leaching temperature and leaching time on the dissolution kinetics of roasted ore were studied.The experimental results show that when the roasting temperature is 550℃and the roasting time is 60 min,the mass ratio of NaOH:rare earth concentrate is 0.60:1,the concentration of HCl is 6.0 mol/L,the ratio of liquid to solid(L/S)6.0:1.0,and the leaching temperature 90℃,leaching time 45 min,stirring speed 200 r/min,and the extraction of rare earth can reach 92.5%.The relevant experimental data show that the process of HCl leaching roasted ore conforms to the shrinking core model,but the control mechanism of the che mical reaction process is different when the leaching temperature is different.When the leaching temperature is between 40 and 70℃,the chemical reaction process is controlled by the diffusion of the product through the residual layer of the inert material.The average surface activation energy of the rare earth element is E_a=9.96 kJ/mol.When the leaching temperature is 75-90℃,the chemical reaction process is controlled by the interface transfer across the product layer(product layer interface mass transfer)and diffusion.The average surface activation energy of rare earth elements is E_a=41.65 kJ/mol.The results of this study have certain significance for the green extraction of mixed rare earth ore.
基金Project supported by the National Natural Science Foundation of China(51634005,51564042)the Natural Science Foundation of Inner Mongolia Autonomous Region of China(2016ZD05,2014ZD04)
文摘The influence of temperature on the complex process of Bayan Obo rare earth (RE) ore flotation with a collector of naphthyl hydroxamic acid (LF8#) was investigated. Industrial test data shows that the grade and recovery of RE increase with the temperature. However, the proportion of bastnaesite in the bulk concentrate increases as the RE grade improves. Adsorption mechanism of LF8# on the surfaces of bastnaesite and monazite were confirmed via zeta potential, UV]Vis Spectrophotometer (UV]Vis), Fourier transform infrared (FIR), and X-ray photoelectron spectroscopy analyses (XPS). Although the results indicate that the total amount of the LF8# adsorption on the surface of bastnaesite and monazite de- creases with increasing the temperature, the amount of stable adsorbed predominance of characteristic bonds (-C(~O)N-] from LF8# uptake on bastnaesite surfaces increases significantly at high tempera- tures. This conclusion indicates that the adsorption stability increases with increasing the temperature. For monazite, the amount of characteristic elements C and N in LF8# does not increase as the temper- ature increases on the mineral surface, but the proportion of characteristic bonds increases, which shows that the adsorption stability of LF8# on the surface of monazite also increases, but it is not as significant as bastnaesite, which may be one of the reasons that the floatability of bastnaesite is better than those of monazite. Pulp dispersion results show that the temperature improve the dispersions of both the gangue and RE minerals. This improved the flotation selectivity so that it favored RE minerals. The calculated bubble size distribution confirms that higher temperatures generate smaller bubbles, thereby increasing the bubble-particle collision probability and the recovery of RE minerals.
基金Financial support from the National Natural Science Foundation of China(No.21901041)Fuzhou University(No.510841)is gratefully acknowledged。
文摘There is an increasing demand of using the low-cost and sustainable cobalt to replace its noble congeners(rhodium and iridium)as reflected by the recent upsurge of cobalt catalysis in the diverse organic transformations.Since all the redox reactivity of cobalt catalysis highly relies on the capability of the interconversion between their oxidation states(most frequently+1,+2 and+3),electrochemistry perfectly meets such a require ment owing to its outstanding perfo rmance in the redox manipulation.In this review,we highlight the recent advances in the merger of cobalt catalysis and electrochemistry in organic synthesis.
基金This work is supported by Shenzhen Fundamental Research Projects(No.JCYJ20190806142203709)We are also grateful to the startup of Harbin Institute of Technology(Shenzhen)through the Talent Development Starting Fund from Shenzhen Government(No.HA11409030).
文摘During last two decades,transition-metal catalyzed asymmetric reactions under continuous flow system have attracted a widespread attention.With its prominent advantages including higher safety and efficiency,precise control,better heat/mass transfer,easier scale-up and better sustainability,it has impressed both the academia and related industries.However,comparing with the prosperous development of transition-metal catalyzed asymmetric reactions in batch,utilization of this type of chemistry under continuous flow is still at an early stage.To inspire more potential industrial application and further studies of this chemistry in flow,this review sum-marized the recent advances of transition-metal catalyzed asymmetric reactions under continuous flow.Moreover,we further discussed the encountered challenges including reactor engineering,catalyst design,catalyst deacti-vation,pressure drop,clogging,side reactions etc.,as well as their corresponding solutions and achievements in this mini-review.
基金supported by the National Natural Science Foundation of China (21202141)Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions+3 种基金the Young Science and Technology Talent Support Project of Jiangsu Province (Lei Yu)the High Level Talent Support Project of Yangzhou University (Topnotch Talent, Lei Yu)the Open Project Program of Jiangsu Key Laboratory of Zoonosis (R1509)the Testing Centre of Yangzhou University
文摘A unique Pd&Cu@Al catalyst was easily fabricated just by immersing commercial aluminum foil in a mixed xylene solution of PdC12 and CuCl2. The catalyst fabrication process led to aluminum oxide coatings in situ, which supported the metal nanoparticles and enhanced their catalytic activities for the phosphine-free Heck reaction of awl halides and styrenes with high turnover number (TON) up to 3.9×10^5. The reaction can be scaled up to at least 100 mmol and has been applied in modification of drug Lapatinib's intermediate with low metal residue. This novel catalyst is of good application potential in industrial production because it was extremely easy to be recycled, in regardless of the generation of the insoluble impurities or tars during the reaction processes.
基金Project supported by National Natural Science Foundation of China(51974168,51662033)State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(SYSJJ2020-08)。
文摘To explore the improving effect of Y_(2)O_(3)on the water resistance of xY_(2)O_(3)-(100-x)(0.05 Al_(2)O_(3)-0.15 ZnO-0.15 Na_(2)O-0.65 B_(2)O_(3))(x=0,0.7 mol%,1.4 mol%,2.1 mol%,2.8 mol%)glasses,glass structure and ion migration characteristics were respectively characterized by an infrared spectrometer and an electrochemical workstation.X-ray diffraction(XRD),scanning electron microscopy(SEM),energy dispersive Xray spectroscopy(EDS)and inductively coupled plasm-atomic emission spectrometry(ICP-AES)were used to comprehensively analyze the alteration products.The experimental results show that with the increase of Y_(2)O_(3)content,the mass loss per unit area of the glass is significantly reduced,and pH in leaching solution has the same change trend with mass loss of the glass,which indicates the improving effect of Y_(2)O_(3)addition on the studied glass.The content of[BO_(4)]structural unit and dc conductivity of glass increase firstly and then decrease with the increase of Y_(2)O_(3)content,and reach a maximum at x=0.7 mol%.Although addition of Y_(2)O_(3)plays the role in the changes of glass structure and ion migration characteristics,the more important influence of Y_(2)O_(3)is on the glass surface alteration layer.Y and Zn elements are enriched on the glass surface and finally transformed into an alteration layer,moreover,the adhesion between the alteration layers and the glass matrix is enhanced with the increase of Y_(2)O_(3)content,which effectively blocks the further interdiffusion between the water molecules and the glass matrix.
基金This research was financially supported by Western Young Scholar Program-B of Chinese Academy of Sciences(No.2018-XBQNXZ-B-020)National Natural Science Foundation of China(Grant Nos.41771234 and 41803024)Open Fund of State Key Laboratory of Loess and Quaternary Geology(No.SKLLQG2011).
文摘Over the past 2000 years,a high-resolution pollen record from the Yushenkule Peat(46°45′-46°57′N,90°46′-90°61′E,2374 m a.s.l.)in the south-eastern Altai Mountains of northwestern China has been used to explore the changes in vegetation and climate.The regional vegetation has been dominated by alpine meadows revealed from pollen diagrams over the past 2000 years.The pollen-based climate was warm and wet during the Roman Warm Period(0-520 AD),cold and wet during the Dark Age Cold Period(520-900 AD),warm and wet during the Medieval Warm Period(900-1300 AD),and cold and dry during the Little Ice Age(1300-1850 AD).Combined with other pollen data from the Altai Mountains,we found that the percentage of arboreal pollen showed a reduced trend along the NW-SE gradient with decreasing moisture and increasing climatic continentality of the Altai Mountains over the past 2000 years;this is consistent with modern distributions of taiga forests.We also found that the taiga(Pinus forest)have spread slightly,while the steppe(Artemisia,Poaceae and Chenopodiaceae)have recovered significantly in the Altai Mountains over the past 2000 years.In addition,the relatively warm-wet climate may promote high grassland productivity and southward expansion of steppe,which favors the formation of Mongol political and military power.
基金Planned Project of the Beijing Municipal Science&Technology Commission[D09050704310903]Capital Project of Characteristic Clinical Application[Z121107001012138]+1 种基金Special Program of Capital Health Development[2011-2002-02]Funded Project of Beijing Natural Science Foundation[7132091].
文摘Objective:The purpose of the current study was to determine the influence of a 1.75 mmol/L calcium(Ca)concentration dialysate(DCa 1.75)during maintenance hemodialysis(MHD)therapy for patients with chronic kidney disease,mineral,and bone disorders(CKD-MBD)on biochemical indices and clinical prognosis.Methods:Four hundred eighty-three MHD patients from three hemodialysis centers were en-rolled.During 24 months of follow-up(January 2011 to December 2012),289 patients from Center 1 who used 1.50 mmol/L Ca concentration dialysate(Dca 1.50)between January and December 2011 and DCa 1.75 between January and December 2012 were included in the high Ca group.The remaining 194 patients from the other centers who used DCa 1.50 for hemodialysis between January 2011 and December 2012 were included in the ordinary Ca group.The following CKD-MBD biochemical indices were monitored:blood Ca;blood phosphorus(P);intact parathyroid hormone(iPTH);and bone-specific alkaline phosphatase(BAP).The metastatic calcification index included calcification of aortic arch scoring(AoACS),abdominal aorta calcification(AAC),and cardiac valve calcification(CVC).The study end points included all-cause mortality(ACM),car-diovascular and cerebrovascular diseases(CCVDs),fractures,and new metastatic calcifications.The changes between the two groups in the observed indices were compared.Results:Two hundred eighty-four patients in the high Ca group(98.3%)and 194 patients in the ordinary Ca group(100.0%)completed an average follow-up of 21.3±5.6 months.After DCa 1.75 was used,the blood Ca in the high Ca group increased[(2.39±0.22)mmol/L vs.(2.34±0.21)mmol/L,t=-2.910,P=0.004]compared to the previous year,and increased[(2.39±0.22)mmol/L vs.(2.30±0.16)mmol/L,t=5.187,P<0.001]compared to the ordinary Ca group in the same year.The blood P and iPTH decreased[(1.78±0.39)mmol/L vs.(1.89±0.42)mmol/L,t=2.909,P=0.004 and(306.5±298.6)pg/ml vs.(425.7±365.1)pg/ml,t=8.377,P<0.001,respectively]compared with the previous year,and decreased[(1.78±0.39)mmol/L vs(1.86±0.39)mmol/L,t=-2.016,P=0.044 and(306.5±298.6)pg/ml vs.(366.6±341.0)pg/ml,t=-2.113,P=0.035,respectively]compared with the ordinary Ca group in the same year.There was no difference in AoACS between the two groups before and after the change in DCa in the high Ca group(P>0.05).In 2011,there was 13 CCVDs,2 fractures,and 13 new metastatic calcifications in the ordinary Ca group compared to 8 CCVDs,3 fractures,and 16 new metastatic calcifications in the high Ca group;there were no statistically significant differences in the incidence of end point events between the two groups(χ^(2)=2.747,P=0.098).In 2012,the values for the ordinary Ca group were 13,2,and 15,respec-tively,while the values for the high Ca group were 8,1,and 19,respectively,which indicated a statistically significant difference in the incidence of end point events between the two groups(χ^(2)=4.391,P=0.036).Conclusion:Short-term use of DCa 1.75 significantly reduced the blood P and iPTH levels in MHD patients,significantly increased the blood Ca level,did not increase the proportion of new cardiovascular calcifications,and decreased the overall inci-dence of end point events.