Free-space optical(FSO)communication technology is a promising approach to establish a secure wireless link,which has the advantages of excellent directionality,large bandwidth,multiple services,low mass and less powe...Free-space optical(FSO)communication technology is a promising approach to establish a secure wireless link,which has the advantages of excellent directionality,large bandwidth,multiple services,low mass and less power requirements,and easy and fast deployments.Increasing the communication capacity is the perennial goal in both scientific and engineer communities.In this paper,we experimentally demonstrate a Tbit/s parallel FSO communication system using a soliton microcomb as a multiple wavelength laser source.Two communication terminals are installed in two buildings with a straight-line distance of~1 km.102 comb lines are modulated by10 Gbit/s differential phase-shift keying signals and demodulated using a delay-line interferometer.When the transmitted optical power is amplified to 19.8 dBm,42 optical channels have optical signal-to-noise ratios higher than 27 dB and bit error rates less than 1×10^(-9).Our experiment shows the feasibility of a wavelength-division multiplexing FSO communication system which suits the ultra-high-speed wireless transmission application scenarios in future satellite-based communications,disaster recovery,defense,last mile problems in networks and remote sensing,and so on.展开更多
Many of the commonly used pharmaceuticals and biologically active natural products are nitrogencontaining compounds.Recently,the transitionmetal-catalyzed or the radical-mediated 1,2-carboamination of alkenes has been...Many of the commonly used pharmaceuticals and biologically active natural products are nitrogencontaining compounds.Recently,the transitionmetal-catalyzed or the radical-mediated 1,2-carboamination of alkenes has been well explored to access amine scaffolds.However,synthetic strategies toward the 1,1-carboamination of alkenes are severely limited.Herein,we describe a method to achieve the 1,1-arylamination using readily available building blocks enabled by palladium catalysis.This sequential three step-Heck arylation,metal migration,followed by aza-1,6-Micheal addition process exhibits excellent chemo-and regioselectivity.To showcase the potential as a method for diversity-oriented drug discovery,the modification of numerous structurally complex bioactive molecules was also successfully performed.展开更多
基金National Natural Science Foundation of China(62075238,61875227)National Key Research and Development Program of China(2022YFB2803203)。
文摘Free-space optical(FSO)communication technology is a promising approach to establish a secure wireless link,which has the advantages of excellent directionality,large bandwidth,multiple services,low mass and less power requirements,and easy and fast deployments.Increasing the communication capacity is the perennial goal in both scientific and engineer communities.In this paper,we experimentally demonstrate a Tbit/s parallel FSO communication system using a soliton microcomb as a multiple wavelength laser source.Two communication terminals are installed in two buildings with a straight-line distance of~1 km.102 comb lines are modulated by10 Gbit/s differential phase-shift keying signals and demodulated using a delay-line interferometer.When the transmitted optical power is amplified to 19.8 dBm,42 optical channels have optical signal-to-noise ratios higher than 27 dB and bit error rates less than 1×10^(-9).Our experiment shows the feasibility of a wavelength-division multiplexing FSO communication system which suits the ultra-high-speed wireless transmission application scenarios in future satellite-based communications,disaster recovery,defense,last mile problems in networks and remote sensing,and so on.
基金supported by the National Science Foundation of China(no.22071267)the National Science and Technology Major Project“Key New Drug Creation and Manufacturing Program,”China(no.2020ZX09201015)+1 种基金the Innovation Team of the“DoubleFirst Class Initiative”(nos.CPU2018GY04 and CPU2018GY35)the Foundation of the Open Project of State Key Laboratory of Natural Medicines(no.SKLNMZZ202023).
文摘Many of the commonly used pharmaceuticals and biologically active natural products are nitrogencontaining compounds.Recently,the transitionmetal-catalyzed or the radical-mediated 1,2-carboamination of alkenes has been well explored to access amine scaffolds.However,synthetic strategies toward the 1,1-carboamination of alkenes are severely limited.Herein,we describe a method to achieve the 1,1-arylamination using readily available building blocks enabled by palladium catalysis.This sequential three step-Heck arylation,metal migration,followed by aza-1,6-Micheal addition process exhibits excellent chemo-and regioselectivity.To showcase the potential as a method for diversity-oriented drug discovery,the modification of numerous structurally complex bioactive molecules was also successfully performed.