The Pb-Zn metallogenic district in NW Guizhou Province is an important part of the Yun-nan-Sichuan-Guizhou Pb-Zn metallogenic province, and also is one of the most important Pb-Zn producers in China. The hosting rocks...The Pb-Zn metallogenic district in NW Guizhou Province is an important part of the Yun-nan-Sichuan-Guizhou Pb-Zn metallogenic province, and also is one of the most important Pb-Zn producers in China. The hosting rocks of the Pb-Zn deposits are Devonian to Permian carbonate rocks, and the basement rocks are meta-sedimentary and igneous rocks of the Proterozoic Kunyang and Huili groups. The ore minerals are composed of sphalerite, galena and pyrite, and the gangue minerals are include calcite and dolomite. Geology and C-O isotope of these deposits were studied in this paper. The results show that δ13C and δ18O values of hydrothermal calcite, altered wall rocks-dolostone, sedimentary calcite and hosting carbonate rocks range from -5.3‰ to -0.6 ‰ (mean -3.4‰) and +11.3‰ to +20.9 ‰ (mean +17.2‰), -3.0‰ to +0.9 ‰ (mean -1.3‰) and +17.0‰ to +20.8‰ (mean +19.7‰), +0.6‰ to +2.5 ‰ (mean +1.4‰) and +23.4‰ to +26.5 ‰ (mean +24.6‰), and -1.8‰ to +3.9‰ (mean +0.7‰) and +21.0‰ to +26.8‰ (mean +22.9‰), respectively, implying that CO2 in the ore-forming fluids was mainly a result of dissolution of Devonian and Carboniferous carbonate rocks. However, it is difficult to evaluate the contribution of sediment de-hydroxylation. Based on the integrated analysis of geology, C and O isotopes, it is believed that the ore-forming fluids of these carbonate-hosted Pb-Zn deposits in this area were derived from multiple sources, including hosting carbonate rocks, Devonian to Permian sedimentary rocks and basement rocks (the Kun-yang and Huili groups). Therefore, the fluids mixing is the main precipitation mechanism of the Pb-Zn deposit in this province.展开更多
Tianqiao carbonate-hosted Pb-Zn deposit, controlled by NW-trending F37 thrust fault and NW-trending Tianqiao anticline, is located in the eastern part of Sichuan-Yunnan-Guizhou(SYG) Pb-Zn metallogenic province, southw...Tianqiao carbonate-hosted Pb-Zn deposit, controlled by NW-trending F37 thrust fault and NW-trending Tianqiao anticline, is located in the eastern part of Sichuan-Yunnan-Guizhou(SYG) Pb-Zn metallogenic province, southwestern Yangtze Block, southwest China. Ore bodies in this deposit are hosted in the Devonian-Carboniferous carbonate rocks, and ore minerals include sphalerite, galena and pyrite, while the gangue minerals are dominated by calcite and dolomite. Using high–precision solid thermal ionization mass spectrometry(TIMS), this paper reports the strontium isotopic compositions(0.7119 to 0.7167) of sulfide samples from the Tianqiao deposit in order to trace the origin of hydrothermal fluids. Compared with the country rocks, the calculated 87Sr/86Sr200 Ma values of sulfide range from 0.7118 to 0.7130, higher than those of the age-corrected Devonian to Permian sedimentary rocks(0.7073 to 0.7101) and the Middle Permian Emeishan flood basalts(0.7078 to 0.7039), but lower than those of the age-corrected Proterozoic basement rocks(such as the Kunyang and Huili Groups, 87Sr/86Sr200 Ma=0.7243 to 0.7288). This implies a mixed strontium source between the older basement rocks and the younger cover sequences. Together with geologic and previous isotopic evidences, we considered that the fluids' mixing is a possible mechanism for sulfide precipitation in the Tianqiao deposit.展开更多
基金financially supported jointly by the National Natural Science Foundation of China (Grant Nos. 41102055and 41102053)the National Basic Research Program of China (Grant No. 2007CB411402)
文摘The Pb-Zn metallogenic district in NW Guizhou Province is an important part of the Yun-nan-Sichuan-Guizhou Pb-Zn metallogenic province, and also is one of the most important Pb-Zn producers in China. The hosting rocks of the Pb-Zn deposits are Devonian to Permian carbonate rocks, and the basement rocks are meta-sedimentary and igneous rocks of the Proterozoic Kunyang and Huili groups. The ore minerals are composed of sphalerite, galena and pyrite, and the gangue minerals are include calcite and dolomite. Geology and C-O isotope of these deposits were studied in this paper. The results show that δ13C and δ18O values of hydrothermal calcite, altered wall rocks-dolostone, sedimentary calcite and hosting carbonate rocks range from -5.3‰ to -0.6 ‰ (mean -3.4‰) and +11.3‰ to +20.9 ‰ (mean +17.2‰), -3.0‰ to +0.9 ‰ (mean -1.3‰) and +17.0‰ to +20.8‰ (mean +19.7‰), +0.6‰ to +2.5 ‰ (mean +1.4‰) and +23.4‰ to +26.5 ‰ (mean +24.6‰), and -1.8‰ to +3.9‰ (mean +0.7‰) and +21.0‰ to +26.8‰ (mean +22.9‰), respectively, implying that CO2 in the ore-forming fluids was mainly a result of dissolution of Devonian and Carboniferous carbonate rocks. However, it is difficult to evaluate the contribution of sediment de-hydroxylation. Based on the integrated analysis of geology, C and O isotopes, it is believed that the ore-forming fluids of these carbonate-hosted Pb-Zn deposits in this area were derived from multiple sources, including hosting carbonate rocks, Devonian to Permian sedimentary rocks and basement rocks (the Kun-yang and Huili groups). Therefore, the fluids mixing is the main precipitation mechanism of the Pb-Zn deposit in this province.
基金financially supported by the National Basic Research Program of China(973 Program)(No.2014CB440905)National Natural Science Foundation of China(Nos.41102055 and 41272111)
文摘Tianqiao carbonate-hosted Pb-Zn deposit, controlled by NW-trending F37 thrust fault and NW-trending Tianqiao anticline, is located in the eastern part of Sichuan-Yunnan-Guizhou(SYG) Pb-Zn metallogenic province, southwestern Yangtze Block, southwest China. Ore bodies in this deposit are hosted in the Devonian-Carboniferous carbonate rocks, and ore minerals include sphalerite, galena and pyrite, while the gangue minerals are dominated by calcite and dolomite. Using high–precision solid thermal ionization mass spectrometry(TIMS), this paper reports the strontium isotopic compositions(0.7119 to 0.7167) of sulfide samples from the Tianqiao deposit in order to trace the origin of hydrothermal fluids. Compared with the country rocks, the calculated 87Sr/86Sr200 Ma values of sulfide range from 0.7118 to 0.7130, higher than those of the age-corrected Devonian to Permian sedimentary rocks(0.7073 to 0.7101) and the Middle Permian Emeishan flood basalts(0.7078 to 0.7039), but lower than those of the age-corrected Proterozoic basement rocks(such as the Kunyang and Huili Groups, 87Sr/86Sr200 Ma=0.7243 to 0.7288). This implies a mixed strontium source between the older basement rocks and the younger cover sequences. Together with geologic and previous isotopic evidences, we considered that the fluids' mixing is a possible mechanism for sulfide precipitation in the Tianqiao deposit.