The properties of the passivation film formed on 316L stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Voltammetry measurements in high- temperature acetic acid. The re...The properties of the passivation film formed on 316L stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Voltammetry measurements in high- temperature acetic acid. The results show that the passivation film formed on 316L stainless steel is stable in 60% acetic acid solution from 25 ℃ to 85 ℃. As temperature increased, the polarization resistance decreased but the interface capacitance increased. There was hardly any relation between temperature and the intrinsic property semiconductor. The passivation film represents the p-semiconductor property in the potential interval of -0.5-0.1 V; represents the n-semiconductor property in the potential interval of 0.1-0.9 V; and represents the p-semiconductor property in the potential interval of 0.9-1.1 V. The voltammetry measurements show that the structure of the passivation film is stable when the temperature is lower than 55 ℃ and that its stability decreased when this temperature is exceeded.展开更多
基金the National R&D Infrastructure and Facility Development Program of China(No.2005DKA10400)
文摘The properties of the passivation film formed on 316L stainless steel were studied by Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky and Voltammetry measurements in high- temperature acetic acid. The results show that the passivation film formed on 316L stainless steel is stable in 60% acetic acid solution from 25 ℃ to 85 ℃. As temperature increased, the polarization resistance decreased but the interface capacitance increased. There was hardly any relation between temperature and the intrinsic property semiconductor. The passivation film represents the p-semiconductor property in the potential interval of -0.5-0.1 V; represents the n-semiconductor property in the potential interval of 0.1-0.9 V; and represents the p-semiconductor property in the potential interval of 0.9-1.1 V. The voltammetry measurements show that the structure of the passivation film is stable when the temperature is lower than 55 ℃ and that its stability decreased when this temperature is exceeded.